Mathematical Physics Vol 1
Chapter A. Fractional Calculus: A Survey of Useful Formulas
464
RL D α
a + f ( x ) , ℜ ( α ) ≥ 0
function - f ( x ) , x > a
Fractional Derivative -
p a
1 2 , p > x
1 p − x
for a = 0 ∧ α = 1 2
( p − x ) − xe µ x
π x
x E x ( − α , µ )+ α E x ( 1 − α , µ ) , for a = 0 E x ( µ − α , ν ) , for a = 0
E x ( µ , ν ) , µ > − 1 x ( µ , ν ) , λ + µ > − 1 x E x ( µ , ν ) , µ > − 2 ( x − a ) − α − 1 sin ( 2 λ ( x − a )) ( x − a ) − α − 1 cos ( 2 λ ( x − a )) x λ , E
Γ ( λ + µ + 1 ) x λ + µ − α Γ ( µ + 1 ) Γ ( λ + µ + 1 − α ) 2
F 2 ( λ + µ + 1 , µ + 1 , λ + µ − α + 1; ν x ) for a = 0
x E x ( µ − α , ν )+ α E x ( µ − α + 1 , ν ) , for a = 0
√ π ( x − a √ π ( x − a
1 2 ) sin ( λ ( x − a )) J 1 2 ) cos ( λ ( x − a )) J
( α +
( λ ( x − a )) ( λ ( x − a ))
2 λ ) − 2 λ ) −
1 2 )
− ( α + − ( α +
( α +
1 2 )
e ( λ ( z − a )) α
( λ ( x − a )) α
λ e
( x )
TableA.3: Analytical Expressions of Some Fractional Derivatives.
L D α
function - f ( x ) , ℜ ( λ ) > 0 ∧ µ > 0 ( b − ax ) γ − 1 ℜ ( γ − α ) < 1 ∧ a > 0 ∧ ax < b
Fractional Derivative -
+ f ( x )
Γ ( 1 + α − γ ) Γ ( 1 − γ ) a − α λ α e λ x
( b − ax ) γ − 1 − α , for ℜ ( α ) ≥ 0
e λ x
µ α sin ( µ x + µ α cos ( µ x + πα 2 ) , for ℜ ( α ) > − 1 πα 2 ) , for ℜ ( α ) > − 1 ( λ 2 + µ 2 ) α / 2 e λ x sin ( µ x + α arctg µ λ ) ( λ 2 + µ 2 ) α / 2 e λ x cos ( µ x + α arctg µ λ )
sin ( µ x ) cos ( µ x )
e λ x sin ( µ x ) e λ x cos ( µ x )
TableA.4: Analytical Expressions of Some Fractional Derivatives.
where is a ∈ ( − ∞ , ∞ ) .
= 0 ,
( x − p ) − α − n − 1 Γ ( − α − n )
, if x > p ≥ a ,
d n δ ( x − p ) d x n
RL D α
(A.73)
a +
if a ≤ x ≤ p ∨ p < a .
where is n ∈ N , a ∈ ( − ∞ , ∞ ) . A.5 Laplace and Fourier Transforms
It is well known that the Laplace and Fourier transforms, for suitable functions, are given by
+ ∞ Z 0
e − st ϕ ( t ) d t
L ϕ ( s )=( L ϕ ( t ))( s )= ˆ ϕ ( s )=
(A.74)
+ ∞ Z
e i κ x ϕ ( x ) d x .
F ϕ ( κ )=( F ϕ ( x ))( κ )= ˆ ϕ ( κ )=
(A.75)
− ∞
A.5.1 Some properties
In connection with the fractional operators we have the following properties for ℜ ( α ) > 0, ℜ ( α ) ∈ ( n − 1 , n ] and suitable functions
n − 1 ∑ k = 0
α 0 + f ( s )= s
α
s n − k − 1 D k RL I n − α
L RL D
L f ( s ) −
0 + f ( 0 ) .
(A.76)
Made with FlippingBook Digital Publishing Software