Mathematical Physics Vol 1

A.5 Laplace and Fourier Transforms

465

L D α −

function - f ( x ) , ℜ ( λ ) > 0 µ > 0 ( b + ax ) γ − 1 ℜ ( γ − α ) < 1 , | arg ( a

f ( x ) ( ℜ ( α ) ≥ 0 )

Fractional Derivative -

Γ ( 1 + α − γ ) Γ ( 1 − γ ) a − α λ α e − λ x

( b + ax ) γ − 1 − α

b ) | < π

e − λ x

πα

µ α sin ( µ x − µ α cos ( µ x −

sin ( µ x ) cos ( µ x )

2 )

πα

2 )

( λ 2 + µ 2 ) α / 2 e − λ x sin ( µ x − α arctg µ λ ) ( λ 2 + µ 2 ) α / 2 e − λ x cos ( µ x − α arctg µ λ )

e − λ x sin ( µ x ) e − λ x cos ( µ x )

TableA.5: Analytical Expressions of Some Fractional Derivatives.

n − 1 ∑ k = 0

α 0 + f ( s )= s

α

s n − k − 1 D k f ( 0 ) .

L C D

L f ( s ) −

(A.77)

F f ( κ ) ( − i κ ) α

F f ( κ ) ( i κ ) α

α + f ( κ )=

α −

( 0 < ℜ ( α ) < 1 )

F L I

and F L I

f ( κ )=

(A.78)

,

α + f ( κ )=( − i κ ) α

F f ( κ ) and F L D α −

f ( κ )=( i κ ) α

F L D

F f ( κ ) ,

(A.79)

where

α e ∓ απ i sign ( κ ) / 2

α

( ∓ i κ )

= | κ |

A.5.2 Some Laplace transforms

Table A.6: Some Laplace transforms

L { f ( t ) } ( s )

f ( t )

α )

d k E

α , β ( ± at d ( ± at α ) k

k ! s α − β ( s α ∓ a ) k + 1

t α k + β − 1

e λ t α

1 s α − λ

∂ ∂λ

n ! s α − 1 ( s α − λ ) n + 1 n ! ( s α − λ ) n + 1

t α n (

α )

) n E

α ( λ t

∂ ∂λ

) n e λ z α

(

s α − β s α ∓ a s α − 1 s α ∓ a 1 s α ∓ a s 1 − β s ∓ a

t β − 1 E

α )

α , β ( ± at α , α ( ± at α )

E α ( ± at t α − 1 E

α )

t β − 1 E t β − 1 E

1 , β ( ± at )= E t ( β − 1 , ± a ) 1 , β ( 0 )= E t ( β − 1 , 0 )=

t β − 1 Γ ( β )

1 s β

1 √ s

1 √ π t 2 q 1 √ π t

1 s √ s

t π

2 n t n − 1 2 1 · 3 · 5 ··· ( 2 n − 1 )

1 s n √ s , (n=1,2,. . . )

√ π

s ( s − a ) √ s

e at ( 1 + 2 at ) ( e bt − e at )

3 2

√ s

1 2 √ π t 3

− a −

− b

Continued on next page

Made with FlippingBook Digital Publishing Software