Mathematical Physics Vol 1
A.5 Laplace and Fourier Transforms
465
L D α −
function - f ( x ) , ℜ ( λ ) > 0 µ > 0 ( b + ax ) γ − 1 ℜ ( γ − α ) < 1 , | arg ( a
f ( x ) ( ℜ ( α ) ≥ 0 )
Fractional Derivative -
Γ ( 1 + α − γ ) Γ ( 1 − γ ) a − α λ α e − λ x
( b + ax ) γ − 1 − α
b ) | < π
e − λ x
πα
µ α sin ( µ x − µ α cos ( µ x −
sin ( µ x ) cos ( µ x )
2 )
πα
2 )
( λ 2 + µ 2 ) α / 2 e − λ x sin ( µ x − α arctg µ λ ) ( λ 2 + µ 2 ) α / 2 e − λ x cos ( µ x − α arctg µ λ )
e − λ x sin ( µ x ) e − λ x cos ( µ x )
TableA.5: Analytical Expressions of Some Fractional Derivatives.
n − 1 ∑ k = 0
α 0 + f ( s )= s
α
s n − k − 1 D k f ( 0 ) .
L C D
L f ( s ) −
(A.77)
F f ( κ ) ( − i κ ) α
F f ( κ ) ( i κ ) α
α + f ( κ )=
α −
( 0 < ℜ ( α ) < 1 )
F L I
and F L I
f ( κ )=
(A.78)
,
α + f ( κ )=( − i κ ) α
F f ( κ ) and F L D α −
f ( κ )=( i κ ) α
F L D
F f ( κ ) ,
(A.79)
where
α e ∓ απ i sign ( κ ) / 2
α
( ∓ i κ )
= | κ |
A.5.2 Some Laplace transforms
Table A.6: Some Laplace transforms
L { f ( t ) } ( s )
f ( t )
α )
d k E
α , β ( ± at d ( ± at α ) k
k ! s α − β ( s α ∓ a ) k + 1
t α k + β − 1
e λ t α
1 s α − λ
∂ ∂λ
n ! s α − 1 ( s α − λ ) n + 1 n ! ( s α − λ ) n + 1
t α n (
α )
) n E
α ( λ t
∂ ∂λ
) n e λ z α
(
s α − β s α ∓ a s α − 1 s α ∓ a 1 s α ∓ a s 1 − β s ∓ a
t β − 1 E
α )
α , β ( ± at α , α ( ± at α )
E α ( ± at t α − 1 E
α )
t β − 1 E t β − 1 E
1 , β ( ± at )= E t ( β − 1 , ± a ) 1 , β ( 0 )= E t ( β − 1 , 0 )=
t β − 1 Γ ( β )
1 s β
1 √ s
1 √ π t 2 q 1 √ π t
1 s √ s
t π
2 n t n − 1 2 1 · 3 · 5 ··· ( 2 n − 1 )
1 s n √ s , (n=1,2,. . . )
√ π
s ( s − a ) √ s
e at ( 1 + 2 at ) ( e bt − e at )
3 2
√ s
1 2 √ π t 3
− a −
− b
Continued on next page
Made with FlippingBook Digital Publishing Software