Mathematical Physics Vol 1
Chapter A. Fractional Calculus: A Survey of Useful Formulas
458
A.2.3 Properties of the Mittag-Leffler functions: special values
z , E 1
E α , 1 ( z )= E α ( z ) , E 1 ( z )= E 1 , 1 ( z )= E t ( 0 , 1 )= e
α , β ( z )= E α , β ( z ) ,
1 1 − z
, | z | < 1 and E 1 ( z )= E 1 , 1 ( z )= E t ( 0 , 1 )= e z ,
E 0 ( z )=
sh ( z ) z
2 )= ch ( √ z ) and E
2 )=
2 )= E
E 2 ( z
2 , 1 ( z
2 , 2 ( z
,
1 2 " 1 2
3 √ z !# ,
√ 3 2
√ z
3 √ z
1 2
e 3
+ 2 e −
E 3 ( z )=
cos
cos 4 √ z + ch 4 √ z , and E 2 , 2 =
E 4 ( z )=
sh ( √ z ) √ z
e z − 1 z
E 1 , 2 ( z )=
.
A.2.4 Generalized exponential functions Let z , λ ∈ C , ℜ ( α ) and n ∈ N Then E α ( λ z α )= ∞ ∑ k = 0
λ k z k α Γ ( α k + 1 ) ,
(A.16)
∞ ∑ k = 0
λ k z ( k + 1 ) α − 1 Γ ( k α + α ) ,
e λ z
α − 1 E
α
α , α ( λ z
α = z
(A.17)
)=
e λ z
α − 1 E n + 1
α , ( n + 1 ) α ( λ z α
α , n = n ! z
(A.18)
) .
Generalized exponential functions - the following properties
c D α
a + E α ( λ ( z − a ) α
)( x )= λ E α ( λ ( x − a ) α ) ,
(A.19) (A.20)
E α ( λ ( z − a ) α
lim z → a +
)= 1 ,
lim z → a + h
α i =
1 Γ ( α )
α e λ ( z − a )
( z − a ) 1 −
(A.21)
,
∂
∂ z
n
α
λ z α
)]= z − n E
[ E α ( λ z
(A.22)
α , 1 − n (
) ,
∂
∂ z
n h
α i = z
e λ z
α − n − 1 E
λ z α
(A.23)
α , α − n (
) ,
∂
∂λ
n
α
α n E n + 1
α
[ E α ( λ z
α , α n + 1 ( λ z
)]= n ! z
(A.24)
) ,
∂
∂λ
n h
α i = n ! z
e λ z
α n + α − 1 E n + 1
α , ( n + 1 ) α ( λ z α
(A.25)
) ,
1 n !
∂ ∂λ
n h
e λ z α i , z̸ = 0 .
e λ z
(A.26)
α , n =
The generalized α -exponential functions do not have the index property, that is, in general
( λ + µ ) z α
E α ( λ z ) E α ( µ z )̸= E α (( λ + µ ) z ) ; e λ z α e µ z α̸ = e
(A.27)
.
Made with FlippingBook Digital Publishing Software