Mathematical Physics Vol 1
A.3 Fractional Derivatives and Integrals
459
A.3 Fractional Derivatives and Integrals
Let α ∈ C : ℜ ( α ) ∈ ( n − 1 , n ] , n ∈ N , and let [ a , b ] be a finite interval in R .
A.3.1 Definitions of some unidimensional fractional operators Riemann-Liouville Left-sided Integral RL I α a + f ( x )= 1 Γ ( α ) Z x a f ( u ) ( x − u ) 1 − α d u , x ≥ a .
(A.28)
Riemann-Liouville Right-sided Integral RL I α b − f ( x )= 1 Γ ( α ) Z b x Riemann-Liouville Left-sided Derivative
f ( u ) ( x − u ) 1 − α
d u , x ≤ b .
(A.29)
x Z a
d n d x n
1 Γ ( n − α )
f ( u ) ( x − u ) 1 − n + α
RL D α
nRL I n − α
a + f ( x )= D
a + f ( x )=
d u , x ≥ a .
(A.30)
Riemann-Liouville Right-sided Derivative
b Z x
d n d x n
1 Γ ( n − α )
f ( u ) ( u − x ) 1 − n + α
RL D α
f ( x )= D nRL I n − α b −
f ( x )=
d u , x ≤ b .
(A.31)
b −
Caputo Left-sided Derivative
x Z a
d n f ( u ) d u n
1 Γ ( n − α )
1 ( x − u ) 1 − n + α
c D α
RL I n − α
n f ( x )=
a + f ( x )=
a + D
d u , x ≥ a .
(A.32)
Caputo Right-sided Derivative
∞ Z x
d n d x n
( − 1 ) n Γ ( n − α )
f ( u ) d u ( u − x ) 1 − n + α
c D α −
f ( x )=( − D ) nL I n − α −
x < ∞ .
f ( x )=
(A.33)
,
Left-sided Finite-Difference
( − 1 ) k
α k
⌊ x − a
h ⌋
∑ k = 0
∆ α
h , a + f ( x )=
f ( x − kh ) , x ≥ a .
(A.34)
Right-sided Finite-Difference
( − 1 ) k
α k
⌊ b − x
h ⌋
∑ k = 0
∆ α
f ( x + kh ) , x ≤ b .
(A.35)
f ( x )=
h , b −
Grünwald-Letnikoff Left-sided Derivative GL D α a + f ( x )= lim h → 0 + ∆ α Grünwald-Letnikoff Right-sided Derivative
h , a + f ( x ) h α
x ≥ a .
(A.36)
,
∆ α
f ( x )
h , b −
GL D α
f ( x )= lim h → 0 +
x ≤ b .
,
b −
h α
Made with FlippingBook Digital Publishing Software