Mathematical Physics Vol 1
A.2 Notation and Special Functions
457
Complementary error function
erfc ( z )= 1 − erf ( z ) , z ∈ C
(A.7)
Mittag-Leffler function, or one-parameter Mittag-Leffler function
∞ ∑ k = 0
z k Γ ( 1 + α k )
, ℜ ( α ) > 0 , z ∈ C .
E α ( z )=
Generalized Mittag-Leffler function with two-paramete function
∞ ∑ k = 0
z k Γ ( β + α k )
, ℜ ( α ) > 0 , ℜ ( β ) > 0 , z ∈ C .
E αβ ( z )=
(A.8)
Generalized Mittag-Leffler function with three-paramete function
∞ ∑ k = 0
( ρ ) k z k Γ ( β + α k ) k !
E ρ
, α , β , ρ ∈ C , ℜ ( α ) > 0 , z ∈ C .
αβ ( z )=
(A.9)
Miller-Ross function
+ ∞ ∑ k = 0
a k z k + ν Γ ( ν + k + 1 )
ν E
E z ( ν , a )=
= z
1 , ν + 1 ( az ) , z ∈ C .
(A.10)
Hypergeometric function
p F q ( a 1 ,..., a p ; b 1 ,..., b q ; z )= 1 + ∞ ∑ k = 1 " z k k !
. # (A.11)
k − 1 ∏ n = 0
( a 1 + n )( a 2 + n ) ··· ( a p + n ) ( b 1 + n )( b 2 + n ) ··· ( b q + n )
Bessel functions of the first kind
( − 1 ) m m ! Γ ( m + α + 1 )
x
2 m + α
∞ ∑ k = 0
1 2
J α ( x )=
(A.12)
.
Modified Bessel functions of the first kind
α J
I α ( x )= j −
α ( jx ) .
(A.13)
Bessel functions of the second kind
J α ( x ) cos ( απ ) − J
x )
− α (
Y α =
(A.14)
.
sin | ( απ )
Hermite polynomial
n d x n
e − x 2
x 2 d
H n ( x )= e
(A.15)
.
Made with FlippingBook Digital Publishing Software