Mathematical Physics Vol 1
Chapter A. Fractional Calculus: A Survey of Useful Formulas
456
Heaviside function - H ( x )= ( 1 , if x ≥ x 0 0 , if x < x 0 . Pringsheim notation of continued fraction (which need not have an infinite number of terms)
= a 0 ;
, ··· = a 0 ,
b k a k
+ ∞
b 1
b 1 a 1
b 2 a 2
b 3 a 3
b 4 a 4
a 0 +
,
,
,
b 2
k = 1
a 1 +
b 3
a 2 +
b 4
a 3 +
b 5 a 5 + ···
a 4 +
Levi-Civita symbol
ε ℓ mn =
+ 1 , if ( ℓ, m , n )=( 1 , 2 , 3 ) , ( 3 , 1 , 2 ) , ( 2 , 3 , 1 ) , − 1 , if ( ℓ, m , n )=( 1 , 3 , 2 ) , ( 3 , 2 , 1 ) , ( 2 , 1 , 3 ) , 0 , if ℓ = m ∨ ℓ = n , ∨ m = n .
A.2.2 Definitions of some Special Functions Euler’s gamma function
+ ∞ R 0
e − y y z − 1 d y , if ℜ ( z ) > 0 ,
Γ ( z )=
(A.1)
if ℜ ( z ) > − n , n ∈ N ∧ z / ∈ Z − 0 .
Γ ( z + n ) ( z ) n
,
Pochhammer function
( ρ ) 0 = 1 and ( ρ ) k = ρ ( ρ + 1 ) ··· ( ρ + k − 1 ) , k ∈ N .
(A.2)
Combinations of a things, b at a time
0 ,
Γ ( a + 1 ) Γ ( b + 1 ) Γ ( a − b + 1 )
, if a , b , a − b / ∈ Z −
a
b
( − 1 ) b Γ ( b − a ) Γ ( b + 1 ) Γ ( − a ) ,
=
if a ∈ Z − ∧ b ∈ Z + 0
if [( b ∈ Z − ∨ b − a ∈ N ) ∧ a / ∈ Z − ] ∨ ( a , b ∈ Z − ∧| a | > | b | ) . (A.3)
Beta function
Γ ( x ) Γ ( y ) Γ ( x + y )
B ( x , y )= B ( y , x )=
(A.4)
.
Digamma function
dlog Γ ( x ) d x
d Γ ( x ) d x
1 Γ ( x )
ψ ( x )=
(A.5)
=
.
Error function
z Z 0
2 √ π
e − t 2 d t
erf ( z )=
z ∈ C .
(A.6)
,
Made with FlippingBook Digital Publishing Software