Mathematical Physics Vol 1
Chapter 7. Partial differential equations
398
Problem 259
∂ 2 u ∂ x ∂ y
∂ 2 u ∂ y 2
∂ 2 u ∂ x 2 −
+ y 2
sin 2 x
2 y sin x
= 0 .
Solution
2 x , a
2 , a
a 11 = sin
12 = − y sin x , a 22 = y
1 = 0 , a 2 = 0
D = a 2 2 sin 2 x − ( sin 2 x ) y 2 = 0 . Given that D = 0 in the entire plane xy , the equation is of parabolic type . The characteristic equation a 11 ( y ′ ) 2 − 2 a 12 ( y ′ )+ a 22 = 0 ⇒ ( y ′ ) 2 − 2 ( − y sin x )( y ′ )+ y 2 = 0 ⇒ ( y ′ ) 1 , 2 = − y sin x . It has only one solution – one characteristic. The characteristic is 12 − a 11 a 22 = y
d y d x
y sin x ⇒
d y y
d x sin x ⇒
x 2
y tg
= c 1 .
= −
= −
We have used here
Z d x
= Z
d x = Z
sin 2 x
2 x 2
2 + cos
1 2sin x
d x =
x 2
2sin x
x 2
sin x
2 cos
2 cos
x 2
= lntg
.
The transformations are
x 2
ξ = y tg , η = η ( x , y )= y .
R Note that , given that η is an arbitrary function, we chose it to be as simple as possible for further use, but also that the Jacobian is not equal to zero. The simplest choice would be η = const . , but then J = 0. The next choices would be η = x or η = y . We have chosen the latter.
The partial derivatives are ∂ξ ∂ x = 1 2 y cos − 2
∂ξ ∂ y
∂η ∂ x
∂η ∂ y
x 2
x 2
= tg
= 0 ,
= 1 ,
,
,
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ y 2
∂ 2 ξ ∂ x ∂ y
1 2
x 2
x 2
1 2
x 2
y cos − 3
cos − 2
sin
= 0 ,
=
,
=
,
∂ 2 η ∂ x 2
∂ 2 η ∂ y 2
∂ 2 η ∂ x ∂ y
= 0 ,
= 0 ,
= 0 .
Made with FlippingBook Digital Publishing Software