Mathematical Physics Vol 1
7.8 Examples
397
Given that η is an arbitrary function, we chose it to be as simple as possible for further use, but also that the Jacobian is not equal to zero. The partial derivatives are
∂ξ ∂ x
∂ξ ∂ y
∂η ∂ x
∂η ∂ y
= 1 ,
= 1 ,
= 0 ,
= 1 ,
∂ 2 ξ ∂ x 2 ∂ 2 η ∂ x 2
∂ 2 ξ ∂ y 2 ∂ 2 η ∂ y 2
∂ 2 ξ ∂ x ∂ y ∂ 2 η ∂ x ∂ y
= 0 ,
= 0 ,
= 0 ,
= 0 ,
= 0 ,
= 0 .
The Jacobian is
1 1 0 1
J =
= 1̸ = 0 .
Calculation new coefficients: ¯ a 11 = a 11 ∂ξ ∂ x 2
+ 2 a 12
∂ξ ∂ x
∂ξ ∂ y
+ a 22
∂ξ ∂ y
2
=
= 1 ( 1 ) 2 + 2 ( − 1 )( 1 )+ 1 2 = 0 ,
¯ a 22 = a 11
∂η ∂ x
+ 2 a 12
∂η ∂ x
∂η ∂ y
+ a 22
∂η ∂ y
2
2
=
=( 0 ) 2 − 2 ( 0 )( 1 )+ 1 2 = 1 ,
¯ a 12 = a 11
∂ξ ∂ x
∂η ∂ x
+ a 12
∂η ∂ x
∂ξ ∂ x
∂η ∂ y
∂ξ ∂ y
∂ξ ∂ y
∂η ∂ y
+ a 22
+
=
= 1 ( 0 )+( − 1 )( 1 )+ 1 = 0 ,
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ x ∂ y
∂ 2 ξ ∂ y 2
∂ξ ∂ x
∂ξ ∂ y
¯ a 1 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= 3 · 1 + 1 · 1 = 4 ,
∂ 2 η ∂ x 2
∂ 2 η ∂ x ∂ y
∂ 2 η ∂ y 2
∂η ∂ x
∂η ∂ y
¯ a 2 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= 0 + 1 + 0 + 0 + 0 = 1 . The transformed equation u ( x , y ) → v ( ξ , η ) ¯ a 11 + 2¯ a 12 + ¯ a 22 + ¯ a 1
∂ 2 v ∂ξ 2
∂ 2 v ∂ξ∂η
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
+ ¯ bv + ¯ c = 0 ⇒
+ ¯ a 2
gains the form
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
+ 4
+ 2 v = 0 .
+
Made with FlippingBook Digital Publishing Software