Mathematical Physics Vol 1
7.8 Examples
399
The Jacobian is
1 2 y cos −
2 x
x 2
1 2
x 2̸
2 tg
y cos − 2
J =
= 0 .
=
0
1
Calculation of new coefficients ¯ a 11 = a 11 ∂ξ ∂ x 2 + 2 a 12 ∂ξ
∂ x
∂ξ ∂ y
+ a 22
∂ξ ∂ y
2
=
x 2
= sin 2 x
2
1 2
1 2
x 2
x 2
x 2
y cos − 2
y cos − 2
+ y 2 tg 2
+ 2 ( − y sin x )
tg
= 0 ,
¯ a 22 = a 11
∂η ∂ x
+ 2 a 12
∂η ∂ x
∂η ∂ y
+ a 22
∂η ∂ y
2
2
=
= 0 + 0 + y 2 = = y 2 = η 2 ,
¯ a 12 = a 11
∂ξ ∂ x
∂η ∂ x
+ a 12 + y 2 tg
∂η ∂ x
∂ξ ∂ x
∂η ∂ y
∂ξ ∂ y
∂ξ ∂ y
∂η ∂ y
+ a 22
+
=
1 2
1 2
1 2
y cos − 2
= − y sin x
= 0 ,
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ x ∂ y
∂ 2 ξ ∂ y 2
∂ξ ∂ x
∂ξ ∂ y
¯ a 1 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= sin 2 x = − 2 y tg x 2
x 2
1 2
x 2
1 2
x 2
y cos − 3
cos − 2
sin
+ 2 ( − y sin x )
=
x 2
x 2
1 1 + tg 2 x 2
cos 2
= − 2 y tg
.
Given that (from the transformations)
ξ η
x 2
tg
=
,
for ¯ a 1 we obtain:
η 2 ξ 2 + η 2
¯ a 1 = − 2 ξ
(7.302)
.
∂ 2 η ∂ x 2
∂ 2 η ∂ x ∂ y
∂ 2 η ∂ y 2
∂η ∂ x
∂η ∂ y
¯ a 2 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= 0 + 0 + 0 + 0 + 0 = 0 . The transformed equation u ( x , y ) → v ( ξ , η ) ¯ a 11 + 2¯ a 12 + ¯ a 22 + ¯ a 1
∂ 2 v ∂ξ 2
∂ 2 v ∂ξ∂η
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
+ ¯ bv + ¯ c = 0 ⇒
+ ¯ a 2
gains the form
∂ 2 v ∂η 2 −
2 ξ ξ 2 + η 2
∂ v ∂ξ
= 0 .
Made with FlippingBook Digital Publishing Software