Mathematical Physics Vol 1
Chapter 7. Partial differential equations
396
¯ a 12 = a 11
∂ξ ∂ x
∂η ∂ x
+ a 12
∂η ∂ x
∂ξ ∂ x
∂η ∂ y
∂ξ ∂ y
∂ξ ∂ y
∂η ∂ y
+ a 22
= 0 ,
+
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ x ∂ y
∂ 2 ξ ∂ y 2
∂ξ ∂ x
∂ξ ∂ y
¯ a 1 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
= 0 ,
∂ 2 η ∂ x 2
∂ 2 η ∂ x ∂ y
∂ 2 η ∂ y 2
∂η ∂ x
∂η ∂ y
¯ a 2 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= 1 ( 1 )= 1 . The transformed equation u ( x , y ) → v ( ξ , η ) ¯ a 11 + 2¯ a 12 + ¯ a 22 + ¯ a 1
∂ 2 v ∂ξ 2
∂ 2 v ∂ξ∂η
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
+ ¯ bv + ¯ c = 0 ⇒
+ ¯ a 2
gains the form
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
1 2 η
= 0 ,
+
+
where we have used that x 2 = 2 η .
Problem 258
∂ 2 u ∂ x 2 −
∂ 2 u ∂ x ∂ y
∂ 2 u ∂ y 2
∂ u ∂ x
∂ u ∂ y
2
+ 3
+ 2 u = 0 .
+
+
Solution
a 11 = 1 , a 12 = − 1 , a 22 = 1 , a 1 = 3 , a 2 = 1 , D = a 2 12 − a 11 a 22 = 1 − 1 = 0 . Given that D = 0 in the entire plane xy , the equation is of parabolic type . The characteristic equation is a 11 ( y ′ ) 2 − 2 a 12 ( y ′ )+ a 22 = 0 ⇒ ( y ′ ) 2 + 2 ( y ′ )+ 1 = 0 ⇒ ( y ′ )
1 , 2 = − 1 .
It has only one solution – one characteristic. The characteristic is
d y d x = − 1 ⇒ d y = − d x ⇒ y = − x + c 1 .
The transformations are
ξ = x + y , η = η ( x , y )= y .
Made with FlippingBook Digital Publishing Software