Mathematical Physics Vol 1
7.8 Examples
393
The transformed partial equation u ( x , y ) → v ( ξ , η ) is now of the form ¯ a 11 + 2¯ a 12 + ¯ a 22 + ¯ a 1 + ¯ a 2 + ¯ bv + ¯ c =
∂ 2 v ∂ξ 2
∂ 2 v ∂ξ∂η
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
( ξ + η )
∂ v ∂η
∂ 2 v ∂ξ∂η −
∂ v ∂ξ
1 2
− 2 · 8
= 0 ⇒
+
( ξ + η )
∂ v ∂η
∂ 2 v ∂ξ∂η
∂ v ∂ξ
1 32
= 0 .
+
+
Problem 256
∂ 2 u ∂ x ∂ y
∂ 2 u ∂ y 2
∂ 2 u ∂ x 2
∂ u ∂ x
∂ u ∂ y
+ 6
+ 10
+ 3
= 0 .
+
Solution
a 11 = 1 , a 12 = 3 , a 22 = 10 , a 1 = 1 , a 2 = 3 D = a 2 12 − a 11 a 22 = 9 − 10 = − 1 < 0 . Given that D < 0 in the entire plane xy , the equation is of elliptic type . Characteristic equation is
√ 36
6 ±
− 40
2 − 2 a 12 ( y ′ )+ a 22 = 0 ⇒ ( y ′ ) 1 , 2 =
a 11 ( y ′ )
= 3 ± i .
2
We have two solution – complex conjugated. The characteristics are
= 3 ± and ⇒
d y d x
d y =( 3 + i ) d x ⇒ y =( 3 + i ) x + c 1 d y =( 3 − i ) d x ⇒ y =( 3 − i ) x + c 2 .
Transformations (real and imaginary parts of the characteristics) are ξ = y − 3 x , η = − x . Partial derivatives are
∂ξ ∂ x
∂ξ ∂ y
∂η ∂ x
∂η ∂ y
= − 3 ,
= 1 ,
= − 1 ,
= 0 ,
∂ 2 ξ ∂ x 2 ∂ 2 η ∂ x 2
∂ 2 ξ ∂ y 2 ∂ 2 η ∂ y 2
∂ 2 ξ ∂ x ∂ y ∂ 2 η ∂ x ∂ y
= 0 ,
= 0 ,
= 0 ,
= 0 ,
= 0 ,
= 0 .
Made with FlippingBook Digital Publishing Software