Mathematical Physics Vol 1
Chapter 7. Partial differential equations
392
The corresponding partial derivatives are ∂ξ ∂ x = − 2 + cos x , ∂ξ ∂ y = 1 ,
∂η ∂ x
∂η ∂ y
= 2 + cos x ,
= 1 ,
∂ 2 ξ ∂ x 2 ∂ 2 η ∂ x 2
∂ 2 ξ ∂ y 2 ∂ 2 ξ ∂ y 2
∂ 2 ξ ∂ x ∂ y ∂ 2 ξ ∂ x ∂ y
= − sin x , = − sin x ,
= 0 ,
= 0 ,
= 0 ,
= 0 .
Check of the Jacobian:
2 + cos x 1 2 + cos x 1
J = −
= − 4̸ = 0 .
Calculation of new coefficients:
¯ a 11 = a 11
∂ξ ∂ x
+ a 22
∂ξ ∂ y
2
2
∂ξ ∂ x
∂ξ ∂ y
+ 2 a 12
=
=( − 2 + cos x ) 2 + 2 ( − cos x )( − 2 + cos x )+( − 3 − sin 2 x )= 1 − ( cos 2 x + sin 2 x )= = 0 , ¯ a 22 = a 11 ∂η ∂ x 2 + 2 a 12 ∂η ∂ x ∂η ∂ y + a 22 ∂η ∂ y 2 = =( 2 + cos x ) 2 + 2 ( − cos x )( 2 + cos x )+( − 3 − sin 2 x )= 1 − ( cos 2 x + sin 2 x )= = 0 ,
+ a 12
∂η ∂ x
∂ξ ∂ x
∂ξ ∂ y
∂η ∂ x
∂ξ ∂ y
∂η ∂ x
∂ξ ∂ y
∂η ∂ y
¯ a 12 = a 11
+ a 22
+
=
=( − 2 + cos x )( 2 + cos x )+( − cos x )( − 2 + cos x + 2 + cos x )+( − 3 − sin 2 x )= = − 8 .
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ x ∂ y
∂ 2 ξ ∂ y 2
∂ξ ∂ x
∂ξ ∂ y
¯ a 1 = a 1
+ a 2
+ a 11
+ 2
+ a 22
=
= − y − sin x .
From transformations
ξ = y + sin x − 2 x , η = y + sin x + 2 x ,
it follows that y + sin x = 1 / 2 ( ξ + η ) , and thus
1 2
( ξ + η ) .
¯ a 1 =
∂ 2 η ∂ x 2
∂ 2 η ∂ x ∂ y
∂ 2 η ∂ y 2
∂η ∂ x
∂η ∂ y
¯ a 2 = a 1
+ a 2
+ a 11
+ 2
+ a 22
= − y − sin x =
1 2
( ξ + η ) .
=
Made with FlippingBook Digital Publishing Software