Mathematical Physics Vol 1
Chapter 7. Partial differential equations
394
The Jacobian is
3 1 − 1 0
J = −
= 1̸ = 0 .
Calculation of new coefficients ¯ a 11 = a 11 ∂ξ ∂ x 2
+ 2 a 12
∂ξ ∂ x
∂ξ ∂ y
+ a 22
∂ξ ∂ y
2
=
=( − 3 ) 2 + 2 ( 3 )( − 3 )+ 10 = = 1 ,
∂η ∂ x
+ 2 a 12
∂η ∂ x
∂η ∂ y
+ a 22
∂η ∂ y
¯ a 22 = a 11
2
2
=
=( − 1 ) 2 + 2 ( 3 )( − 1 ) 0 + 0 = = 1 ,
¯ a 12 = a 11
∂ξ ∂ x
∂η ∂ x
+ a 12
∂η ∂ x
∂ξ ∂ x
∂η ∂ y
∂ξ ∂ y
∂ξ ∂ y
∂η ∂ y
+ a 22
+
=
=( − 3 )( − 1 )+ 3 [( − 3 ) 0 + 1 ( − 1 )]+ 10 · 0 = 3 − 3 = 0 ,
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ x ∂ y
∂ 2 ξ ∂ y 2
∂ξ ∂ x
∂ξ ∂ y
¯ a 1 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= 1 ( − 3 )+ 3 · 1 = 0 ,
∂ 2 η ∂ x 2
∂ 2 η ∂ x ∂ y
∂ 2 η ∂ y 2
∂η ∂ x
∂η ∂ y
¯ a 2 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
= 1 ( − 1 )+ 3 · 0 = − 1 . Transformed equation u ( x , y ) → v ( ξ , η ) ¯ a 11 + 2¯ a 12 + ¯ a 22 + ¯ a 1
∂ 2 v ∂ξ 2
∂ 2 v ∂ξ∂η
∂ 2 v ∂η 2
∂ v ∂ξ
∂ v ∂η
+ ¯ bv + ¯ c = 0 ⇒
+ ¯ a 2
gains the form
∂ 2 v ∂η 2 −
∂ v ∂ξ
∂ v ∂η
= 0 .
+
Made with FlippingBook Digital Publishing Software