Mathematical Physics Vol 1
7.8 Examples
391
∂ 2 η ∂ x 2
∂ 2 η ∂ x ∂ y
∂ 2 η ∂ y 2
∂η ∂ x
∂η ∂ y
¯ a 2 = a 1
+ a 2
+ a 11
+ 2 a 12
+ a 22
=
=( − cos x )+ cos x = = 0 .
Given that b = 0 it follows that also ¯ b = 0, and the transformed equation, when u ( x , y ) → v ( ξ , η ) , finally obtains the form ¯ a 12 ∂ 2 v ∂ξ∂η = 0 ⇒ ∂ 2 v ∂ξ∂η = 0 .
Problem 255
∂ 2 u ∂ x 2 −
∂ 2 u ∂ x ∂ y −
∂ 2 u ∂ y 2 −
∂ u ∂ y
( 3 + sin 2 x )
2cos x
y
= 0 .
Solution The old coefficients
2 x ) , a
a 11 = 1 , a 12 = − cos x , a 22 = − ( 3 + sin
1 = 0 , a 2 = − y .
The discriminant
D = cos 2 x + 3 + sin 2 x = 4 > 0 . Given that the discriminant is greater than zero in the entire plane x , y , this equation is of hyperbolic type in the entire plane x , y .
Given that D > 0 we have two real characteristics. The characteristic equation, in this case, has the form
d y 2 + 2cos x d x d y − ( 3 + sin 2 x ) d x 2 = 0 ⇒ − 2cos x ± q 4cos 2 x + 4 ( 3 + sin 2 x ) 2
y ′
= − cos x ± 2 .
1 , 2 =
The characteristics are
y = − sin x + 2 x + c 1 , y = − sin x − 2 x + c 2 .
The substitutions are
c 1 = ξ = y − 2 x + sin x , c 2 = η = y + 2 x + sin x .
Made with FlippingBook Digital Publishing Software