Mathematical Physics Vol 1
Chapter 7. Partial differential equations
390
The characteristics are y ′
1 = − sin x + 1 ⇒ y = x + cos x + c 1 that is y ′ 2 = − sin x + 1 ⇒ y = − x + cos x + c 2 .
the substitutions are
c 1 = y − x − cos x = ξ i c 2 = y + x − cos x = η . The corresponding partial derivatives, necessary for calculating the new coefficients, are
∂ξ ∂ x
∂ξ ∂ y
∂η ∂ x
∂η ∂ y
= − 1 + sin x ,
= 1 ,
= 1 + sin x ,
= 1 ,
∂ 2 ξ ∂ x ∂ y ∂ 2 η ∂ x ∂ y
∂ 2 ξ ∂ y 2 ∂ 2 η ∂ y 2
∂ 2 ξ ∂ x 2 ∂ 2 η ∂ x 2
= cos x ,
= 0 ,
= 0 ,
= cos x ,
= 0 ,
= 0 .
Check of the Jacobian:
∂ξ ∂ x ∂η ∂ x
∂ξ ∂ y ∂η ∂ y
1 + sin x 1 1 + sin x 1
= −
J =
= − 2̸ = 0 .
Calculation of new coefficients: ¯ a 11 = a 11 ∂ξ ∂ x 2
+ a 22
∂ξ ∂ y
2
∂ξ ∂ x
∂ξ ∂ y
+ 2 a 12
=
=( − 1 + sin x ) 2 + 2 ( − sin x )( − 1 + sin x )+( − cos 2 x )= 0 , ¯ a 22 = a 11 ∂η ∂ x 2 + 2 a 12 ∂η ∂ x ∂η ∂ y + a 22 ∂η ∂ y 2 = =( 1 + sin x ) 2 + 2 ( − sin x )( 1 + sin x )+( − cos 2 x )= 0 ,
∂ξ ∂ x
∂η ∂ x
∂ξ ∂ x
∂η ∂ y
∂ξ ∂ y
∂η ∂ x
∂ξ ∂ y
∂η ∂ y
¯ a 12 = a 11
+ a 12
+ a 21
+ a 22
=
=( − 1 + sin x )( 1 + sin x )+( − sin x )[( − 1 + sin x )+( 1 + sin x )]+( − cos 2 x )= − 2 . Given that a 1 = 0 and a 2 = − cos x , we obtain: ¯ a 1 = a 1 + a 2 + a 11 + 2 a 12 + a 22 =
∂ 2 ξ ∂ x 2
∂ 2 ξ ∂ x ∂ y
∂ 2 ξ ∂ y 2
∂ξ ∂ x
∂ξ ∂ y
=( − cos x )+ cos x = = 0 ,
Made with FlippingBook Digital Publishing Software