Mathematical Physics Vol 1
6.3 Examples
329
Problem 226 Expand the function f ( x )= x sin x into a Fourier series in the interval ( − π , π ) .
Result
∞ ∑ n = 2
( − 1 ) n + 1 n 2 − 1
1 2
f ( x )= 1 −
cos x + 2
cos nx .
Problem 227 Expand the function f ( x )= x cos x into a Fourier series in the interval − π 2 , π 2 .
Result
∞ ∑ n = 1
( − 1 ) n + 1 n ( 4 n 2 − 1 ) 2
16 π
f ( x )=
sin2 nx .
Problem 228 Expand the function f ( x )= x ( π − x ) into a Fourier series in the interval [ 0 , π ) , f ( x )= f ( x + π ) .
Result
∞ ∑ n = 1
π 2
cos2 nx n 2
f ( x )=
6 −
.
Problem 229 Expand the function f ( x )=
π − x 2
into a Fourier series in the interval ( 0 , 2 π ) .
Result
∞ ∑ n = 1
sin nx n
f ( x )=
.
Made with FlippingBook Digital Publishing Software