Mathematical Physics Vol 1
Chapter 6. Trigonometric Fourier series. Fourier integral
328
Problem 222 Expand the function f ( x )= sin ax into a Fourier series in the interval ( − π , π ) , ( a̸ = 0 , ± 1 , ± 2 ,... )
Result
∞ ∑ n = 1
( − 1 ) n + 1 n sin nx n 2 − a 2 .
2sin π a π
f ( x )=
Problem 223 Expand the function f ( x )= sh ax into a Fourier series in the interval ( − π , π ) .
Result
∞ ∑ n = 1
( − 1 ) n + 1 n sin nx n 2 + a 2 .
2sh π a π
f ( x )=
Problem 224 Expand the function f ( x )= ch ax into a Fourier series in the interval ( − π , π ) .
Result
π "
a cos nx a 2 + n 2 #
∞ ∑ n = 1
2sh a π
1 2 a
( − 1 ) n
f ( x )=
+
.
Problem 225 Expand the function f ( x )= e ax into a Fourier series in the interval ( − l , l ) .
Result
f ( x )= 2sh ( al ) · "
al cos nx − π n sin nx ( al ) 2 +( π n ) 2 # .
∞ ∑ n = 1
1 2 al
( − 1 ) n
+
Made with FlippingBook Digital Publishing Software