Mathematical Physics Vol 1
Chapter 6. Trigonometric Fourier series. Fourier integral
330
Problem 230 Expand the following function into a Fourier series f ( x )= A 0 < x < l , 0 l < x < 2 l ,
in the interval ( 0 , 2 l ) , where A is a constant.
Result
∞ ∑ k = 0
( 2 k + 1 ) π x l .
A 2
2 A π
1 2 k + 1
f ( x )=
sin
+
Problem 231 Expand the function f ( x )= π 2 − x 2 into a Fourier series in the interval ( − π , π ) .
Result
∞ ∑ n = 1
( − 1 ) n + 1 n 2
2 3
π 2 + 4
cos nx .
f ( x )=
Made with FlippingBook Digital Publishing Software