Mathematical Physics Vol 1
6.3 Examples
327
π Z
π Z 0
2 n 2 π Z
n π
1 π
2 π
a n =
| x | cos nx d x =
x cos nx d x =
y cos y d y =
0
− π
=( y = u , d u = d y , cos y d y = d v , v = sin y )=
2 n 2 π
sin y d y
y sin y π 0 − cos y n π 0 =
n π Z 0
=
=
2 n 2 π
2 n 2 π
(( − 1 ) n − 1 )=
=
= −
0 for even values of n ,
4 n 2 π
for odd values of n .
1 π Z
π
b n = | x | sin nx d x = 0 . Thus, the Fourier series of the function f ( x )= | x | is f ( x )= π 2 − 4 π ∞ ∑ n = 0 1 ( 2 n + 1 ) 2 − π
cos ( 2 n + 1 ) x .
Problem 220
Expand the following function into a Fourier series f ( x )= ax , − π < x ≤ 0 , bx , 0 < x < π .
Solution
∞ ∑ k = 0
∞ ∑ k = 1
( − 1 ) k + 1 sin kx k .
π ( b − a ) 4
2 ( a − b ) π
cos ( 2 k + 1 ) x ( 2 k + 1 ) 2
f ( x )=
+( a + b )
+
Problem 221 Expand the function f ( x )= cos ax into a Fourier series in the interval ( − π , π ) , ( a̸ = ± 1 2 , ± 3 2 ,... ) .
Result
π "
a cos nx n 2 − a 2 #
∞ ∑ n = 1
2sin π a
1 2 a
( − 1 ) n + 1
f ( x )=
+
.
Made with FlippingBook Digital Publishing Software