Mathematical Physics Vol 1
Chapter 6. Trigonometric Fourier series. Fourier integral
326
Bu introducing the substitution
1 n
1 n
nx = y ⇒ x =
y dx =
dy
we obtain
1 π n 2 Z
n π
a n =
y cos ydy .
− n π
Partial integration
y = u , du = dy , cos ydy = dv , v = sin y
yields
y sin y n π − n π
1 n 2 π 1 n 2 π
sin ydy =
− Z
n π
a n =
− n π
n π sin n π − n π sin ( − n π )+ cos y n π − n π = ( cos n π − cos ( − n π ))= 1 n 2 π
=
1 n 2 π
( cos n π − cos n π )= 0 .
=
For b n , we obtain, in a similar way
1 π Z
1 n 2 π Z
π
n π
b n =
x sin nxdx = y cos y n π − n π
y sin ydy =
− π 1 n 2 π − 1 n 2 π −
− n π
cos ydy =
+ Z
n π
=
− n π
n π cos n π − n π cos ( − n π )+ sin y n π − n π = ( − 2 n π cos n π + sin n π + sin n π )= 1 n 2 π
=
1 n 2 π
2 n
( − 2 n π ( − 1 ) n )=
( − 1 ) n + 1 .
=
∞ ∑ n = 1
( − 1 ) n + 1 n
f ( x )= 2
sin nx .
(6.48)
R Note. The function f ( x )= x is odd and its expansion contains only coefficients next to the odd sine function.
Problem 219 Expand the function f ( x )= | x | into a Fourier series in the interval ( − π , π ) .
Solution
x 2 π 0
π Z
π Z 0
1 π
2 π
2 π
1 2
= π ,
a 0 =
| x | d x =
xdx =
− π
Made with FlippingBook Digital Publishing Software