Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
286
bearing in mind that Bessel polynomials J n ( z ) are generated by the function
∞ ∑ n = − ∞
G ( z , t )= e z
1 t ) =
2 ( t −
n .
J n ( z ) t
(5.267)
Solution Differentiating the equation (5.267) by z yields
1 t ! =
1 2
1 t
z 2 t −
∞ ∑ n = − ∞
n ,
J ′ n ( z ) t
t −
e
that is
1 2
1 t
∞ ∑ n = − ∞
∞ ∑ n = − ∞
n =
n
J ′ n ( z ) t
t −
J n ( z ) t
or 1 2
n − 1 ! =
∞ ∑ n = − ∞
∞ ∑ n = − ∞
∞ ∑ n = − ∞
n + 1 −
n .
J ′ n ( z ) t
J n ( z ) t
J n ( z ) t
All sums are reduced to t n , and given that n takes values from − ∞ to ∞ , we obtain 1 2 ∞ ∑ n = − ∞ J n − 1 ( z ) t n − ∞ ∑ n = − ∞ J n + 1 ( z ) t n ! = ∞ ∑ n = − ∞ J ′ n ( z ) t n . Equating coefficients next to t n we obtain
1 2
z ) − J n + 1 ( z ))= J ′ n ( z ) .
( J n
− 1 (
Problem 201
Prove the following identities
n z n z
J n ( z )+ J ′ n ( z ) ,
J n
z )=
− 1 (
J n + 1 ( z )= J n ( z ) − J ′ n ( z ) , bearing in mind that the Bessel function can be represented by the series
∞ ∑ r = 0
( z / 2 ) n + 2 r r ! ( n + r ) !
( − 1 ) r
J n ( z )=
(5.268)
.
Made with FlippingBook Digital Publishing Software