Mathematical Physics Vol 1
5.10 Examples
287
Solution Differentiating (5.268) by z we obtain
∞ ∑ r = 0
( n + 2 r ) z n + 2 r − 1 2 n + 2 r r ! ( n + r ) ! .
( − 1 ) r
J ′ n ( z )=
(5.269)
If equation (5.268) is now multiplied by n z
, and then added to equation (5.269), we
obtain
∞ ∑ r = 0
( 2 n + 2 r ) z n + 2 r − 1 2 n + 2 r r ! ( n + r ) ! .
n z
( − 1 ) r
J n ( z )+ J ′ n ( z )=
The right hand side of this equation is ∞ ∑ r = 0 ( − 1 ) r 2 ( n + r ) z n + 2 r − 1 2 n + 2 r r ! ( n + r ) ! = ∞ ∑ r = 0
z n + 2 r − 1 2 n + 2 r − 1 r ! ( n + r − 1 ) !
( − 1 ) r
= J n
z ) ,
− 1 (
which proves the first identity. In order to prove the second identity, we will first multiply the equation (5.268) by n z , and then substitute r by r + 1, which yields n z J n ( z )= ∞ ∑ r = 0 ( − 1 ) r nz n + 2 r − 1 2 n + 2 r r ! ( n + r ) ! = (5.270)
∞ ∑ r = − 1
nz n + 2 r + 1 2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! .
( − 1 ) r + 1
(5.271)
=
If we substitute r by r + 1 in equation (5.269), we obtain
∞ ∑ r = − 1
( n + 2 r + 2 ) z n + 2 r + 1 2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! .
( − 1 ) r + 1
J ′ n ( z )=
(5.272)
Subtracting equation (5.272) from equation (5.271) yields n z J n ( z ) − J ′ n ( z )= ∞ ∑ r = − 1 ( − 1 ) r + 1 nz n + 2 r + 1
2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! − ( n + 2 r + 2 ) z n + 2 r + 1 2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! = nz n + 2 r + 1 2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! ( n + 2 r + 2 ) z n + 2 r + 1 2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! − ( − 2 r − 2 ) z n + 2 r + 1 2 · 2 n + 2 r + 1 ( r + 1 ) ! ( n + r + 1 ) ! =
∞ ∑ r = − 1
( − 1 ) r + 1
−
∞ ∑ r = 0
nz n − 1 2 n 0! n ! −
( − 1 ) r + 1
+( − 1 ) 0
=
∞ ∑ r = 0
nz n − 1 2 n 0! n !
( − 1 ) r + 1
( − 1 ) 0
−
∞ ∑ r = 0 ∞ ∑ r = 0
( − 1 ) r + 1
=
z n + 2 r + 1 2 n + 2 r + 1 r ! ( n + r + 1 ) !
( − 1 ) r
= J n + 1 ( z ) ,
=
which was to be proved.
Made with FlippingBook Digital Publishing Software