Mathematical Physics Vol 1
5.10 Examples
285
Hermite polynomials
Problem 199 Prove the recurrence formula
2 xH n ( x ) − 2 nH n x )= H n + 1 ( x ) , bearing in mind that the function generating Hermite polynomials H n ( x ) has the following form G ( x , t )= e 2 xt − t 2 = ∞ ∑ n = 0 H n ( x ) t n n ! . − 1 (
Solution Let us start from the equation
∞ ∑ n = 0
t n n !
G ( x , t )= e 2 xt − t 2
H n ( x )
=
.
Differentiating by t yields
∞ ∑ n = 1
t n − 1 n !
( 2 x − 2 t ) e 2 xt − t 2
H n ( x ) n
=
,
and from there it follows that
∞ ∑ n = 0
∞ ∑ n = 1
t n n !
t n − 1 ( n − 1 ) !
( 2 x − 2 t )
H n ( x )
H n ( x )
=
∞ ∑ n = 0 ∞ ∑ n = 0 ∞ ∑ n = 0
∞ ∑ n = 0 ∞ ∑ n = 0 ∞ ∑ n = 1
∞ ∑ n = 0
t n n ! − t n n ! − t n n ! −
t n + 1 n !
t n n !
2 x
H n ( x )
2
H n ( x )
H n + 1 ( x )
=
∞ ∑ n = 0
t n + 1 ( n + 1 ) !
t n n !
2 x
H n ( x )
2
H n ( x )( n + 1 )
H n + 1 ( x )
=
∞ ∑ n = 0
t n n !
t n n !
2 x
H n ( x )
2
H n
x ) n
H n + 1 ( x )
− 1 (
=
.
Equating coefficients next to t n yields
2 xH n ( x ) − 2 nH n
x )= H n + 1 ( x ) .
− 1 (
Bessel polynomials
Problem 200
Prove
1 2
z ) − J n + 1 ( z ))= J ′ n ( z ) ,
( J n
− 1 (
Made with FlippingBook Digital Publishing Software