Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
284
and from there, equating coefficients next to t n , the recurrent relation L n + 1 ( x )+( x − 2 n − 1 ) L n ( x )+ n 2 L n − 1 ( x )= 0 . If the equation (5.260) is now differentiated by x we obtain
(5.261)
∞ ∑ n = 0
t n n !
t ( 1 − t ) 2
xt 1 − t =
e −
L ′ n ( x )
−
.
Using (5.260) we further obtain
∞ ∑ n = 0
∞ ∑ n = 0
t n n !
t n n !
L ′ n ( x )
t
L n ( x )
+( 1 − t )
= 0 .
Equating coefficients next to t n yields the recurrent formula
x )+ L ′ n ( x ) − nL ′ n
( x )= 0 .
(5.262)
nL n
− 1 (
− 1
If the equation (5.261) is differentiated twice by x , we obtain
L ′′ n + 1 ( x )+( x − 2 n − 1 ) L ′′ n ( x )+ 2 L ′ n ( x )+ n 2 L ′′ n − 1
( x )= 0 .
Further, substituting n by n + 1, yields
L ′′ n + 2 ( x )+( x − 2 n − 3 ) L ′′ n + 1 ( x )+ 2 L ′ n + 1 +( n + 1 ) 2 L ′′
n ( x )= 0 .
(5.263)
From (5.262) it follows that
L ′ n ( x )= nL ′ n
( x ) − nL n
x ) ,
− 1 (
− 1
and then differentiating by x
L ′′ n ( x )= nL ′′ n
( x ) − nL ′ n
( x ) .
− 1
− 1
If we now substitute n by n + 1 and n + 2 respectively, we obtain
L ′ n + 1 ( x )=( n + 1 ) L ′ n ( x ) − ( n + 1 ) L n ( x ) L ′′ n + 1 ( x )=( n + 1 ) L ′′ n ( x ) − ( n + 1 ) L ′ n ( x ) , L ′′ n + 2 ( x )=( n + 2 ) L ′′ n + 1 ( x ) − ( n + 2 ) L ′ n + 1 ( x ) .
(5.264) (5.265) (5.266)
Substituting L ′ n + 1 ( x ) from (5.264) and L ′′ n + 1 ( x ) from (5.265) into (5.266), yields L ′′ n + 2 ( x )=( n + 2 ) { ( n + 1 )[ L ′′ n ( x ) − L ′ n ( x )] − ( n + 1 )[ L ′ n ( x ) − L n ( x )] } = =( n + 1 )( n + 2 ) L ′′ n ( x ) − 2 ( n + 1 )( n + 2 ) L ′ n ( x )+( n + 1 )( n + 2 ) L n ( x ) . Using the obtained results, the equation (5.263) can be reduced to the following form xL ′′ n ( x )+( 1 − x ) L ′ n ( x )+ nL n ( x )= 0 , and we thus conclude that the Laguerre polynomial L n ( x ) is a particular solution of the Laguerre differential equation.
Made with FlippingBook Digital Publishing Software