Mathematical Physics Vol 1
5.10 Examples
283
Comparing the real coefficients next to t n from the previous and the initial equation, for x = cos θ we obtain P n ( cos θ )= Re " n ∑ k = 0 − 1 / 2 n − 1 / 2 n − k e ( 2 k − n ) i θ # = = n ∑ k = 0 − 1 / 2 n − 1 / 2 n − k cos ( 2 k − n ) θ . (5.259) This equation can be expressed in the following form
n ∑ k = 0
( 2 n − 2 k − 1 ) !! ( 2 n − 2 k ) !!
( 2 k − 1 ) !! ( 2 k ) !!
P n ( cos θ )=
cos ( n − 2 k ) θ .
Special forms of (5.259) are used in practice for even values of n P n ( cos θ )= − 1 / 2 n 2 + 2 n 2 − 1 ∑ k = 0 − 1 / 2 n − 1 / 2 n − k
cos ( 2 k − n ) θ ,
that is, for odd values of n
n − 1 2 ∑ k = 0
n
− 1 / 2 n − k
− 1 / 2
P n ( cos θ )= − 2
cos ( 2 k − n ) θ .
Laguerre polynomials
Problem 198 Prove that Laguerre polynomials are solutions of Laguerre differential equation xy ′′ +( 1 − x ) y ′ + ny = 0 .
Solution Laguerre polynomials are generated by the function
∞ ∑ n = 0
t n n !
1 1 − t
xt 1 − t =
e −
G ( x , t )=
L n ( x )
(5.260)
.
If both sides of the equation are differentiated by t , and then multiplied by 1 − t 2 , we obtain e − xt 1 − t − x 1 − t e − xt 1 − t =( 1 − t 2 ) ∞ ∑ n = 1 L n ( x ) t n − 1 ( n − 1 ) ! . By applying (5.260) we further obtain
∞ ∑ n = 0
∞ ∑ n = 0
∞ ∑ n = 1
t n n ! −
t n n !
t n − 1 ( n − 1 ) !
=( 1 − t 2 )
( 1 − t )
L n ( x )
x
L n ( x )
L n ( x )
,
Made with FlippingBook Digital Publishing Software