Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
278
it follows that
2 t − t − x − ( 3 x 2 − 1 ) t = 0 ,
xP 0 + 3 xP 1 t − P 0 t − P 1 − 2 P 2 t = x + 3 x
and from there ∞ ∑ n = 2
∞ ∑ n = 2
∞ ∑ n = 2
n − x
n +
x ) t n = 0 .
( n + 1 ) P n + 1 ( x ) t
( 2 n + 1 ) P n ( x ) t
nP n
− 1 (
Grouping coefficients next to t n we obtain ∞ ∑ n = 2
x )] t n = 0 .
[( n + 1 ) P n + 1 ( x ) − ( 2 n + 1 ) xP n ( x )+ nP n − 1 (
from where it follows
( n + 1 ) P n + 1 ( x ) − ( 2 n + 1 ) xP n ( x )+ nP n − 1 (
x )= 0 .
Problem 194 Prove the Christoffel recurrence formula P ′ n + 1 ( x ) − P ′ n − 1
( x )=( 2 n + 1 ) P n ( x ) ,
(5.254)
if the Legendre polynomial P n ( x ) is defined by the expansion
∞ ∑ n = 0
1
n .
G ( x , t )=
P n ( x ) t
√ 1
=
− 2 xt + t 2
Solution If we start from
∞ ∑ n = 0
1
n ,
G ( x , t )=
P n ( x ) t
√ 1
=
− 2 xt + t 2
and then differentiate both the left and the right hand side by x , we obtain
∞ ∑ n = 0
t ( 1 − 2 xt + t 2 ) − 3 / 2 =
n .
P ′ n ( x ) t
If we substitute the expression ( 1 − 2 xt + t 2 ) − 1 / 2 in this relation by the sum from (5.253), and then multiply both sides by ( 1 − 2 xt + t 2 ) , we obtain t ∞ ∑ n = 0 P n ( x ) t n =( 1 − 2 xt + t 2 ) ∞ ∑ n = 0 P ′ n ( x ) t n , ∞ ∑ n = 0 P n ( x ) t n + 1 = ∞ ∑ n = 0 P ′ n ( x ) t n − 2 x ∞ ∑ n = 0 P ′ n ( x ) t n + 1 + ∞ ∑ n = 0 P ′ n ( x ) t n + 2
Made with FlippingBook Digital Publishing Software