Mathematical Physics Vol 1
5.10 Examples
279
Reducing all to sums of t n + 1 we obtain ∞ ∑ n = 0 P n ( x ) t n + 1 = ∞ ∑ n = − 1 P ′ n + 1 ( x ) t
∞ ∑ n = 0
∞ ∑ n = 1
n + 1 − 2 x
n + 1 +
( x ) t n + 1
P ′ n ( x ) t
P ′ n
− 1
Given that these sums start from different values of n , we shall separate the terms for n = − 1 and n = 0, which yields P 0 t + ∞ ∑ n = 1 P n ( x ) t n + 1 = P ′ 0 + P ′ 1 t + ∞ ∑ n = 1 P ′ n + 1 ( x ) t n + 1 − 2 xP ′ 0 t − 2 x ∞ ∑ n = 1 P ′ n ( x ) t n + 1
∞ ∑ n = 1
( x ) t n + 1 .
P ′ n
+
− 1
Substituting the Legendre polynomial P 0 = 1 and the derivatives of Legendre polyno mials P ′ 0 = 0 i P ′ 1 = 1, we obtain
∞ ∑ n = 1
∞ ∑ n = 1
∞ ∑ n = 1
n + 1 = 0 + t +
n + 1 − 0 − 2 x
n + 1
P ′ n + 1 ( x ) t
P ′ n ( x ) t
t +
P n ( x ) t
∞ ∑ n = 1
( x ) t n + 1 .
P ′ n
+
− 1
From there, after grouping coefficients next to t n + 1 , it follows P n ( x )= P ′ n + 1 ( x ) − 2 xP ′ n ( x )+ P ′ n − 1 ( x ) .
(5.255)
Further, by differentiating the Bonnet formula (equations 5.252) by x , we obtain
( n + 1 ) P ′ n + 1 ( x ) − ( 2 n + 1 ) xP ′ n ( x ) − ( 2 n + 1 ) P n ( x )+ nP ′ n − 1
( x )= 0 .
(5.256)
Eliminating P ′ n from equations (5.255) and (5.256) we obtain the required recurrent formula. P ′ n + 1 ( x ) − P ′ n − 1 ( x )=( 2 n + 1 ) P n ( x ) .
Problem 195 Prove that Legendre polynomials satisfy the Legendre differential equation ( x 2 − 1 ) y ′′ + 2 xy ′ − n ( n + 1 ) y = 0 .
Solution If we start from
∞ ∑ n = 0
1
n ,
G ( x , t )=
P n ( x ) t
√ 1
=
− 2 xt + t 2
Made with FlippingBook Digital Publishing Software