Mathematical Physics Vol 1
5.10 Examples
277
Solution If we start from
∞ ∑ n = 0
1
n ,
G ( x , t )=
P n ( x ) t
(5.253)
√ 1
=
− 2 xt + t 2
and the differentiate both the left an right hand side by t , we obtain the equality
∞ ∑ n = 1
1 2
− 2 x + 2 t p ( 1 − 2 xt + t 2 ) 3
n − 1 ,
P n ( x ) nt
−
=
and from there
∞ ∑ n = 1
x − t 1 − 2 xt + t 2
1
n − 1 .
P n ( x ) nt
√ 1
=
− 2 xt + t 2
Based on (5.253), and after multiplying by 1 − 2 xt + t 2 , we obtain ( x − t ) ∞ ∑ n = 0 P n ( x ) t n =( 1 − 2 xt + t 2 ) ∞ ∑ n = 1 P n ( x ) nt n − 1 , that is
∞ ∑ n = 0
∞ ∑ n = 0 ∞ ∑ n = 1
n −
n + 1 =
x
P n ( x ) t
P n ( x ) t
∞ ∑ n = 1
∞ ∑ n = 1
n − 1 − 2 x
n +
n + 1 .
P n ( x ) nt
P n ( x ) nt
P n ( x ) nt
=
Reducing all powers in the sums to t n we obtain
∞ ∑ n = 0
∞ ∑ n = 1
n −
x ) t n =
x
P n ( x ) t
P n
− 1 (
∞ ∑ n = 0
∞ ∑ n = 1
∞ ∑ n = 2
n − 2 x
n +
x )( n − 1 ) t n .
P n + 1 ( x )( n + 1 ) t
P n ( x ) nt
P n
=
− 1 (
Separating the terms of the sum for n = 0 and n = 1we obtain
∞ ∑ n = 2
∞ ∑ n = 2
n − P
x ) t n =
xP 0 + xP 1 t + x
P n ( x ) t
0 t −
P n
− 1 (
∞ ∑ n = 2
∞ ∑ n = 2
n − 2 xP
n +
= P 1 + 2 P 2 t +
( n + 1 ) P n + 1 ( x ) t
1 t − 2 x
nP n ( x ) t
∞ ∑ n = 2
x ) t n ,
( n − 1 ) P n
+
− 1 (
that is
xP 0 + 3 xP 1 t − P 0 t − P 1 − 2 P 2 t =
∞ ∑ n = 2
∞ ∑ n = 2
∞ ∑ n = 2
n − x
n +
x ) t n .
( n + 1 ) P n + 1 ( x ) t
( 2 n + 1 ) P n ( x ) t
nP n
=
− 1 (
As the three first Legendre polynomials are [ 35 ] P 0 ( x )= 1 , P 1 ( x )= x , P 2 ( x )=
1 2
( 3 x 2 − 1 ) ,
Made with FlippingBook Digital Publishing Software