Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
274
The integral in this equation can be partially integrated several times 19 , which yields + 1 Z − 1 ( 1 − x ) n ( 1 + x ) n d x = =( 1 − x ) n ( 1 + x ) n + 1 n + 1 + 1 − 1 + n n + 1 + 1 Z − 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x =
+ 1 Z
( 1 + x ) n + 2 n + 2
n n + 1
( 1 − x ) n − 2 ( n − 1 )
d x =
=
− 1
+ 1 Z
n n + 1
n − 1 n + 2
− 1 ( 1 − x ) n − 2 ( 1 + x ) n + 2 d x = ··· =
=
+ 1 Z
+ 1 Z
n n + 1
n − 1 n + 2 ···
1 2 n
n ( n − 1 ) ··· 1 ( n + 1 )( n + 2 ) ··· ( 2 n )
2 n d x
2 n d x
( 1 + x )
( 1 + x )
=
=
.
− 1
− 1
Given that
+ 1
+ 1 Z
( 1 + x ) 2 n + 1 2 n + 1
2 2 n + 1 2 n + 1
2 n d x
( 1 + x )
=
=
,
− 1
− 1
for the square of the norm we finally obtain
2 · 2 2 n 2 n + 1
1 ( 2 n n ! )
n !1 · 2 ··· n 1 · 2 ··· n · ( n + 1 ) ··· ( 2 n )
2 2 n + 1
2
∥ P n ( x ) ∥
2 ( 2 n ) !
=
=
.
We have thus proved that Legendre polynomials are orthogonal, but that they are not normalized.
Problem 189 Prove that for each fixed n = 0 , 1 ,... , Bessel functions J n ( λ 1 n x ) , J n ( λ 2 n x ) , . . . , form a set of orthogonal functions on the interval 0 ≤ x ≤ R , with respect to the weight function p ( x )= x , i.e. that R Z 0 xJ n ( λ kn x ) J n ( λ mn x ) d x = 0 , m̸ = k , R 2 2 J 2 n + 1 ( λ mn R ) , m = k . (5.243)
Problem 190
Prove that
+ ∞ Z
=
0 , n̸ = m , n ! √ 2 π , n = m ,
x 2 / 2 d x
He m ( x ) He n ( x ) e −
(5.244)
− ∞
19 Given that R u , d v = uv − R v , d u , we assumed that in this case u =( 1 − x ) 2 , and d v =( 1 + x ) n d x .
Made with FlippingBook Digital Publishing Software