Mathematical Physics Vol 1
5.10 Examples
273
where
u n ( x )= x
2 − 1
n
,
and also
u n ( ± 1 )= u ′ ( ± 1 )= 0 . The previous integral, by way of partial integration, becomes + 1 Z − 1 d n u n ( x ) d x n d n u n ( x ) d x n d x = n ( ± 1 )= ··· = u ( n − 1 ) n
+ 1
n ( x ) d x n − 1
n ( x ) d x n + 1
d n − 1 u
+ 1 Z
d n + 1 u
( n ) n ( x ) · u
( n − 1 ) n
u
( x )
+( − 1 )
d x ⇒
=
− 1
− 1
d n u
n ( x ) d x n
n ( x ) d x n
+ 1 Z
+ 1 Z
d n u
d 2 n u
n ( x )
d x =( − 1 ) n
u n ( x )
.
d x 2 n
− 1
− 1
Given that
= x 2 n +
n 1
( − 1 )+
n 2
u n = x
2 − 1
x 2
x 2
n
n − 1
n − 2
( − 1 ) 2 + ···
for the derivative within the integral we obtain
d 2 n d x 2 n
d 2 n d x 2 n
x 2 n = 2 n ( 2 n − 1 ) ··· 2 · 1 =( 2 n ) ! .
( u n )=
The square of the norm can now be represented as
+ 1 Z
1 ( 2 n n ! )
2
2 ( 2 n ) ! ( − 1 ) n
∥ P n ( x ) ∥
u n d x .
=
− 1
However, given that
n =( − 1 ) n 1 − x 2 n ,
u n = x
2 − 1
the previous expression can be rewritten in the form
+ 1 Z − 1
1 ( 2 n n ! )
1 − x 2
n
2
∥ P n ( x ) ∥
2 ( 2 n ) !
d x .
=
Made with FlippingBook Digital Publishing Software