Mathematical Physics Vol 1
5.10 Examples
275
i.e. Hermite functions form a set of orthogonal functions, with respect to the weight function p ( x )= e − x 2 / 2 .
Problem 191 Prove that Laguerre functions satisfy the following equations a) ∞ Z 0 L α m ( x ) L α n ( x ) e − x d x = δ mn ,
(5.245)
b)
=
∞ Z 0
0 ,
n̸ = m ,
L α
α n ( x ) e −
x x α d x
( n + α ) ! n !
m ( x ) L
(5.246)
, n = m .
Legendre polynomials
Problem 192 Prove that the function G ( x , t )=( 1 − 2 xt + t 2 ) − 1
2 generates Legendre polynomials,
i.e.
∞ ∑ n = 0
G ( x , t )= 1 − 2 xt + t 2 − 1
n .
P n ( x ) t
2 =
Solution The observed function has two singularities G ( x , t ) , namely the two zeroes of the polynomial 1 − 2 xt + t 2 : t 1 , 2 = x ± i p 1 − x 2 . As the absolute value of both solutions | t 1 | = | t 2 | = 1, we can conclude that the function can be expanded into Taylor series in the vicinity of point t = 0, as the series is convergent for | t | < 1. If | 2 xt − t 2 | < 1 we have the following expansion ( 1 − 2 xt + t 2 ) − 1 2 = 1 − ( 2 xt − t 2 ) − 1 2
( − 1 ) k − ( 2 k − 1 ) !! ( 2 k ) !!
1 / 2 k
∞ ∑ k = 0 ∞ ∑ k = 0 ∞ ∑ k = 0
( 2 xt − t 2 ) k
=
(5.247)
( 2 xt − t 2 ) k
=
( 2 k ) ! 2 2 k k ! k !
( 2 xt − t 2 ) k .
=
If the condition
| t | ( 2 | x | + | t | ) < 1 ,
(5.248)
Made with FlippingBook Digital Publishing Software