Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
272
Multiplying the first equation by P m ( x ) , and the second equation by P n ( x ) , we obtain P m h 1 − x 2 P ′ n i ′ + n ( n + 1 ) P n P m = 0 , P n h 1 − x 2 P ′ m i ′ + m ( m + 1 ) P m P n = 0 . By subtracting the resulting equations we further obtain [ n ( n + 1 ) − m ( m + 1 )] P m P n + P m h 1 − x 2 P ′ n i ′ − P n h 1 − x 2 P ′ m i ′ = 0 . Let us note that P m h 1 − x 2 P ′ n i ′ − P n h 1 − x 2 P ′ m i ′ = = h P m 1 − x 2 P ′ n i ′ − P ′ m 1 − x 2 P ′ n − h P n 1 − x 2 P ′ m i ′ + P ′ n 1 − x 2 P ′ m = = h P n 1 − x 2 P ′ m − P m 1 − x 2 P ′ n i ′ − 1 − x 2 P ′ n P ′ m − P ′ m P ′ n = = h P n 1 − x 2 P ′ m − P m 1 − x 2 P ′ n i ′ . Thus, the previous relation can be rewritten as [ n ( n + 1 ) − m ( m + 1 )] P m P n + h 1 − x 2 P n P ′ m − P m P ′ n i ′ = 0 . Integrating this relation from − 1 to + 1yields [ n ( n + 1 ) − m ( m + 1 )] + 1 Z − 1 P m ( x ) P n ( x ) d x +
+ 1 Z
d d x h
n i d x = 0 , for n̸ = m .
1 − x 2 P
′ m − P m P ′
n P
+
− 1
Given that
+ 1
+ 1 Z
d h 1 − x 2 P
n i = 1 − x
n
2 P
n P m ′ − P m P ′
′ m − P m P ′
n P
= 0 ,
− 1
− 1
because, for x = − 1 and x =+ 1, 1 − x 2 = 0, and P bounded functions, it follows that P n ( ± 1 ) < ∞ , P m ( ± 1 ) < ∞ , P ′ ∞ , and, as [ n ( n + 1 ) − m ( m + 1 )]̸= 0, we finally obtain + 1 Z − 1 P m ( x ) P n ( x ) d x = 0 , za n̸ = m , which is the condition of orthogonality. For the norm we obtain n ( x ) , P ′
n ( x ) , P m ( x ) and P ′ n ( ± 1 ) < ∞ i P ′
m ( x ) are m ( ± 1 ) <
d n u
n ( x ) d x n
+ 1 Z
2
1 ( 2 n n ! )
2
∥ P n ( x ) ∥
d x ,
=
2
− 1
Made with FlippingBook Digital Publishing Software