Mathematical Physics Vol 1
5.6 Special functions that are not a result of the Frobenius method
247
the integral (5.131) becomes
π / 2 Z 0
∞ Z 0
e − r 2
( r cos ϕ ) 2 m − 1 · ( r sin ϕ ) 2 n − 1 r d r d ϕ =
u =
π / 2 Z 0 ( cos ϕ ) 2 m − 1 · ( sin ϕ ) 2 n − 1 d ϕ =
∞ Z 0
e − r 2 r 2 ( m + n ) − 1 d r
(5.133)
=
π / 2 Z 0 ( cos ϕ ) 2 m − 1 · ( sin ϕ ) 2 n − 1 d ϕ
1 2
Γ ( m + n )
=
From (5.132) and (5.133) we obtain
π / 2 Z 0 ( cos ϕ ) 2 m − 1 · ( sin ϕ ) 2 n − 1 d ϕ ,
1 4
1 2
Γ ( m ) Γ ( n )=
Γ ( m + n )
(5.134)
u =
that is
π / 2 Z 0 ( cos ϕ ) 2 m − 1 · ( sin ϕ ) 2 n − 1 d ϕ =
Γ ( m ) Γ ( n ) Γ ( m + n ) .
1 2
(5.135)
If we now introduce the following substitutions
m ′ + 1 2
2 m − 1 = m ′ ⇒ m = 2 n − 1 = n ′ ⇒ n =
,
(5.136)
n ′ + 1 2
,
the integral (5.135) becomes
Γ
2 ·
Γ
2
m ′ + 1
n ′ + 1
π / 2 Z 0
( cos ϕ ) m ′ ( sin ϕ ) n ′ d ϕ = 1 2
(5.137)
Γ
2
.
m ′ + n ′ + 2
Note that m ′ > − 1 and n ′ > − 1, which follows from the condition that m > 0 and n > 0. In the special case, when m ′ = n ′ = 0, we obtain π / 2 Z 0 d ϕ = 1 2 [ Γ ( 1 / 2 )] 2 Γ ( 1 ) ⇒ π 2 = [ Γ ( 1 / 2 )] 2 2 ⇒ Γ ( 1 / 2 )= √ π .
(5.138)
Further, from (5.126), we obtain:
1 2
1 2 √ π , Γ ( 5 / 2 )=
1 · 3 2 2
1 · 3 · 5 2 3
√ π , Γ ( 7 / 2 )=
√ π ,
Γ ( 3 / 2 )=
Γ ( 1 / 2 )=
(5.139)
etc.
From (5.127) it follows that
Γ ( n + 1 ) n
Γ ( n )=
(5.140)
,
and then Γ ( n ) → ∞ , when n → + 0.
Made with FlippingBook Digital Publishing Software