Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
246
Specially, for n = 1, from (5.123), we obtain
∞ Z 0
e − x d x = 1 .
Γ ( 1 )=
(5.124)
By partial integration, from (5.123) we obtain
∞ Z 0
: 0
− e − x x n − 1
∞ 0 +( n − 1 )
e − x x n − 2 d x | {z } Γ ( n − 1 ) ,
Γ ( n )=
(5.125)
and then for n > 1
Γ ( n )=( n − 1 ) · Γ ( n − 1 ) .
(5.126)
Substituting n by n + 1yields ( n = 1 , 2 ,... )
Γ ( n + 1 )= n · Γ ( n )= n · ( n − 1 ) · Γ ( n − 1 )= ··· = n !
(5.127)
If we substitute x by x 2 in (5.123), we obtain
∞ Z 0
∞ Z 0
e − x 2
e − x 2 x 2 n − 1 d x .
· x 2 n − 2 d ( x 2 )= 2
Γ ( n )=
(5.128)
From here, for n = 1 / 2, it follows
∞ Z 0
e − x 2 d x
Γ ( 1 / 2 )= 2
(5.129)
.
Let us now show that the integral
π / 2 Z 0
cos m τ · sin n τ d τ ,
(5.130)
can be expressed in terms of the Γ – function. Let us start from the integral
∞ Z 0
∞ Z 0
e − x 2 − y 2
· x 2 m − 1 · y 2 n − 1 d x d y .
u =
(5.131)
This double integral can be represented as a product of two single integrals
∞ Z 0
∞ Z 0
1 4
e − x 2
e − y 2
· x 2 m − 1 d x ·
· y 2 n − 1 d y =
Γ ( m ) · Γ ( n ) .
u =
(5.132)
On the other hand, by switching to polar coordinates
( x = r cos ϕ , y = r sin ϕ , d x d y = r d r d ϕ ) ,
Made with FlippingBook Digital Publishing Software