Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
248
Based on (5.140), the Γ – function can be extended for n < 0, starting with the interval ( − 1 , 0 ) , followed by the interval ( − 2 , − 1 ) , etc. The function thus extended is depicted in Fig. 5.8.
Figure 5.6: Γ function.
Also, using the relation (5.119), the gamma function can also be extended to the left half plane, that is, for the values Re ( z ) ≤ 0
Γ ( z + n ) ( z ) n
Γ ( z )=
, Re ( z ) > − n , n ∈ N , z ∈ Z − 0 : = { 0 , − 1 , − 2 ,... }
(5.141)
where ( z ) n for z ∈ C , n ∈ N 0 is defined by
( z ) 0 = 1 , ( z ) n = z ( z + 1 ) ··· ( z + n − 1 ) ,
(5.142)
The previous relations yield the following identities
Γ ( n + 1 )=( 1 ) n = n ! ,
(5.143)
Γ ( z + n ) z ( z + 1 ) ··· ( z + n − 1 ) .
Γ ( z )=
(5.144)
Definition For z ∈ C \{ 0 , − 1 , − 2 , − 3 , ···} Euler Gamma function is defined by Γ ( z + 1 )= ∞ R 0 e − t t z − 1 d t , if Re ( z ) > 0 Γ ( z + 1 ) / z , if Re ( z ) ≤ 0 , z̸ = 0 , − 1 , − 2 ,... that is, the function is defined in the entire complex plane except for zero and points having a negative integer value. (5.145)
Made with FlippingBook Digital Publishing Software