Mathematical Physics Vol 1
4.6 Examples
213
Also
3 = c
∂ x
∂ u 1 ∂ x
∂ u 2 ∂ x
∂ u 3
1 + c
2 + c
c 1 ∇ u
2 ∇ u
3 ∇ u
i +
+ c 2
+ c 3
1
(4.238)
∂ y
j + c 1
∂ z
+ c 1
∂ u 1 ∂ y
∂ u 2 ∂ y
∂ u 3
∂ u 1 ∂ z
∂ u 2 ∂ z
∂ u 3
k ,
+ c 2
+ c 3
+ c 2
+ c 3
or
∂ x
3 = c
∂ u 1 ∂ x
∂ u 2 ∂ x
∂ u 3
1 + c
2 + c
c 1 ∇ u
2 ∇ u
3 ∇ u
i +
+ c 2
+ c 3
1
(4.239)
+ c 1
∂ y
j + c 1
∂ z
∂ u 1 ∂ y
∂ u 2 ∂ y
∂ u 3
∂ u 1 ∂ z
∂ u 2 ∂ z
∂ u 3
k .
+ c 2
+ c 3
+ c 2
+ c 3
Equalizing coefficients next to i , j , k we obtain c 1 ∂ u 1 ∂ x + c 2 ∂ u 2 ∂ x + c 3 ∂ u 3 ∂ x = c 1
∂ u 1 ∂ x ∂ u 1 ∂ y ∂ u 1 ∂ z
∂ u 2 ∂ x ∂ u 2 ∂ y ∂ u 2 ∂ z
∂ u 3 ∂ x ∂ u 3 ∂ y ∂ u 3 ∂ z
+ c 2
+ c 3
,
∂ u 1 ∂ y ∂ u 1 ∂ z
∂ u 2 ∂ y ∂ u 2 ∂ z
∂ u 3 ∂ y ∂ u 3 ∂ z
(4.240)
c 1
+ c 2
+ c 3
= c 1
+ c 2
+ c 3
,
+ c 2
+ c 3
c 1
= c 1
+ c 2
+ c 3
.
From equations (4.237) and (4.240), by equalizing the coefficients, we obtain c 1 = c 1 ∂ u 1 ∂ u 1 + c 2 ∂ u 2 ∂ u 1 + c 3 ∂ u 3 ∂ u 1 , c 2 = c 1 ∂ u 1 ∂ u 2 + c 2 ∂ u 2 ∂ u 2 + c 3 ∂ u 3 ∂ u 2 , c 3 = c 1 ∂ u 1 ∂ u 3 + c 2 ∂ u 2 ∂ u 3 + c 3 ∂ u 3 ∂ u 3 , which can be written as
(4.241)
∂ u 1 ∂ u p
∂ u 2 ∂ u p
∂ u 3 ∂ u p
c p = c 1
+ c 2
+ c 3
(4.242)
,
or
3 ∑ q = 1
∂ u q ∂ u p
c p =
c q
p = 1 , 2 , 3 .
(4.243)
And analogously
3 ∑ q = 1
∂ u q ∂ u p
c p =
c q
p = 1 , 2 , 3 .
(4.244)
Definition If the coordinate transformation u i = u i ( u j ) transforms the system c law (4.244), then this system defines a covariant tensor of the first order .
i according to the
Made with FlippingBook Digital Publishing Software