Mathematical Physics Vol 1
Chapter 4. Field theory
212
or
1 ∂ u p ∂ u 1
1 ∂ u 1 2 ∂ u 1 3 ∂ u 1
1 ∂ u 2 2 ∂ u 2 3 ∂ u 2
1 ∂ u 3 2 ∂ u 3 3 ∂ u 3
1 ∂ u
2 ∂ u
3 ∂ u
C 1 = C
+ C
+ C
,
1 ∂ u
2 ∂ u
3 ∂ u
C 2 = C
(4.232)
+ C
+ C
,
1 ∂ u
2 ∂ u
3 ∂ u
C 3 = C
+ C
+ C
,
or shortly
p ∂ u 2
p ∂ u 3
2 ∂ u
3 ∂ u
C p = C
+ C
+ C
p = 1 , 2 , 3 ,
(4.233)
,
or
3 ∑ q = 1
∂ u p ∂ u q
C q
C p =
p = 1 , 2 , 3 .
(4.234)
,
In the same way we obtain
3 ∑ q = 1
∂ u p ∂ u q
C p
C q
p = 1 , 2 , 3 .
(4.235)
=
,
Definition If the coordinate transformation u i = u i ( u j ) transforms the system C i according to the law (4.235), then this system defines a contravariant tensor of the first order . From a geometrical point of view C i determines contravariant coordinates of vector C in terms of the base of the coordinate system u i , namely C = C i g i . This uswhy C i is often called contravariant vector in literature. Exercise 168 Determine how a covariant tensor (covariant vector coordinates) is transformed within a coordinate transformation. Solution Let us write the covariant components of vector A in systems ( u 1 , u 2 , u 3 ) and ( u 1 , u 2 , u 3 ) A = c 1 ∇ u 1 + c 2 ∇ u 2 + c 3 ∇ u 3 = c 1 ∇ u 1 + c 2 ∇ u 2 + c 3 ∇ u 3 . (4.236) Given that u p = u p ( u 1 , u 2 , u 3 ) , where p = 1 , 2 , 3, it follows that ∂ u p ∂ x = ∂ u p ∂ u 1 ∂ u 1 ∂ x + ∂ u p ∂ u 2 ∂ u 2 ∂ x + ∂ u p ∂ u 3 ∂ u 3 ∂ x ,
∂ u p ∂ y ∂ u p ∂ z
∂ u p ∂ u 1 ∂ u p ∂ u 1
∂ u 1 ∂ y ∂ u 1 ∂ z
∂ u p ∂ u 2 ∂ u p ∂ u 2
∂ u 2 ∂ y ∂ u 2 ∂ z
∂ u p ∂ u 3 ∂ u p ∂ u 3
∂ u 3 ∂ y ∂ u 3 ∂ z
(4.237)
=
+
+
,
=
+
+
.
Made with FlippingBook Digital Publishing Software