Mathematical Physics Vol 1
Chapter 4. Field theory
214
Exercise 169 Let ( u 1 , u 2 , u 3 ) be generalized coordinates. a) Show that the following stands
=
∂ r ∂ u 3
g 11 g 12 g 13 g 21 g 22 g 23 g 31 g 32 g 33
2
∂ r ∂ u 1 ·
∂ r ∂ u 2 ×
g =
,
p d u q in the expressions for d s 2 (see Example
where g pq are metric coefficients next to d u
156 on p. 203). b) Show that the volume element in generalized orthogonal coordinates is equal to √ g d u 1 d u 2 d u 3 .
Solution a) Given that
∂ r ∂ u p ·
∂ r ∂ u q
∂ x ∂ u p
∂ x ∂ u q
∂ y ∂ u p
∂ y ∂ u q
∂ z ∂ u p
∂ z ∂ u q
g pq = α p · α q =
p , q = 1 , 2 , 3 ,
=
+
+
using the theorem on multiplication of determinants a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 A 1 A 2 A 3 B 1 B 2 B 3 C 1 C 2 C 3
=
= a 1 A 1 + a 2 A 2 + a 3 A 3 a 1 B 1 + a 2 B 2 + a 3 B 3 a 1 C 1 + a 2 C 2 + a 3 C 3 b 1 A 1 + b 2 A 2 + b 3 A 3 b 1 B 1 + b 2 B 2 + b 3 B 3 b 1 C 1 + b 2 C 2 + b 3 C 3 c 1 A 1 + c 2 A 2 + c 3 A 3 c 1 B 1 + c 2 B 2 + c 3 B 3 c 1 C 1 + c 2 C 2 + c 3 C 3
we obtain
2
∂ x ∂ u 1 ∂ x ∂ u 2 ∂ x ∂ u 3
∂ y ∂ u 1 ∂ y ∂ u 2 ∂ y ∂ u 3
∂ z ∂ u 1 ∂ z ∂ u 2 ∂ z ∂ u 3
∂ r
∂ r ∂ u 3
2
∂ r ∂ u 2 ×
∂ u 1 ·
=
=
∂ y ∂ u 1 ∂ y ∂ u 2 ∂ y ∂ u 3
∂ z ∂ u 1 ∂ z ∂ u 2 ∂ z ∂ u 3
∂ x ∂ u 1 ∂ x ∂ u 2 ∂ x ∂ u 3
∂ y ∂ u 1 ∂ y ∂ u 2 ∂ y ∂ u 3
∂ z ∂ u 1 ∂ z ∂ u 2 ∂ z ∂ u 3
∂ x ∂ u 1 ∂ x ∂ u 2 ∂ x ∂ u 3
g 11 g 12 g 13 g 21 g 22 g 23 g 31 g 32 g 33
=
=
.
b) The volume element is given by the expression d V = ∂ r ∂ u 1 d u 1 · ∂ r ∂ u 2 d u 2 × ∂ r ∂ u 3
d u 3 =
∂ r ∂ u 1 ·
∂ r ∂ u 2 ×
∂ r ∂ u 3
d u 1 d u 2 d u 3
= √ g d u 1 d u 2 d u 3 . It should be noted that √ g is the absolute value of the Jacobian.
Made with FlippingBook Digital Publishing Software