Mathematical Physics Vol 1
Chapter 4. Field theory
208
Exercise 163 Calculate the following in cylindrical cooridnates a) ∇Φ , b) ∇ · A , c) ∇ × A , d) ∇ 2 Φ .
Solution For cylindrical coordinates ( ρ , φ , z ) u 1 = ρ , u 2 = φ ,
u 3 = z ; e 3 = e z ;
e 1 = e ρ ,
e 2 = e φ ,
h 2 = h φ = ρ ,
h 1 = h ρ = 1 ,
h 3 = h z = 1 ,
and thus A = A ρ e 1 + A φ e 2 + A z e 3 . a)
∂ Φ ∂ u 1
∂ Φ ∂ u 2
∂ Φ ∂ u 3
1 h 1
1 h 2
1 h 3
∇Φ =
e 1 +
e 2 +
e 3 =
∂ Φ ∂ρ
∂ Φ ∂φ
∂ Φ ∂ z
1 1
1 ρ
1 1
e ρ +
e φ +
e z =
=
∂ Φ ∂ρ
∂ Φ ∂φ
∂ Φ ∂ z
1 ρ
e ρ +
e φ +
e z .
=
b)
1 h 1 h 2 h 3 1 ( 1 )( ρ )( 1 ) ∂ ∂ u 1
( A 3 h 1 h 2 ) =
∂ ∂ u 2
∂ ∂ u 3
∇ · A =
( A 1 h 2 h 3 )+
( A 2 h 3 h 1 )+
(( 1 )( ρ ) A z ) =
∂ ∂ρ
∂ ∂φ
∂ ∂ z
(( ρ )( 1 ) A ρ )+
(( 1 )( 1 ) A φ )+
=
1 ρ
( ρ A z ) .
∂ A φ ∂φ
∂ ∂ρ
∂ ∂ z
( ρ A ρ )+
=
+
c)
ρ e φ
h 1 e 1 h 2 e 2 h 3 e 3 ∂ ∂ u 1 ∂ ∂ u 2 ∂ ∂ u 3 A 1 h 1 A 2 h 2 A 3 h 3
e ρ
e z
1 h 1 h 2 h 3
1 ρ
∂ ∂ρ ∂ ∂ z A ρ ρ A φ A z ∂ ∂φ
∇ × A =
=
=
1 ρ
( ρ A φ ) e ρ + ρ
∂ A z ∂ρ
e φ +
∂φ
e z .
∂ A ρ
∂ A ρ
∂ A z ∂φ −
∂ ∂ z
∂ ∂ρ
ρ
( ρ A φ ) −
∂ z −
=
Exercise 164 Write the Laplace equation in terms of parabolic coordinates.
Made with FlippingBook Digital Publishing Software