Mathematical Physics Vol 1
4.6 Examples
209
Solution For parabolic coordinates ( ρ , φ , z ) u 1 = u , u 2 = v ,
u 3 = z ; e 3 = e z ;
e 1 = e u ,
e 2 = e v ,
h 1 = h u = p u
h 2 = h v = p u
2 + v 2 ,
2 + v 2 ,
h
3 = h z = 1 .
Then
1 u 2 + v 2 1 u 2 + v 2
∂ ∂ u ∂ 2 ψ ∂ u 2
∂ψ ∂ u
∂ ∂ v
∂ψ ∂ v
∂ ∂ z
∂ψ ∂ z
∇ 2 ψ =
( u 2 + v 2 )
+
+
=
∂ 2 ψ ∂ v 2
∂ 2 ψ ∂ z 2
=
+
+
.
and the Laplace equation is ∇ 2 ψ = 0, that is ∂ 2 ψ ∂ u 2 + ∂ 2 ψ ∂ v 2
∂ 2 ψ ∂ z 2
+( u 2 + v 2 )
= 0 .
4.6.10 Surfaces in terms of orthogonal generalized coordinates
Exercise 165 Show that the square of the arc element of the curve r = r ( u , v ) that lies in a plane, can be written in the following form d s 2 = E d u 2 + 2 F d u d v + G d v 2 .
Solution Given that
∂ r ∂ u
∂ r ∂ v
d r =
d u +
d v ,
it follows that
d s 2 = d r · d r = =
∂ r ∂ u
∂ r ∂ u
∂ r ∂ u
∂ r ∂ v
∂ r ∂ v
∂ r ∂ v
d u 2 + 2
d v 2 =
d u d v +
= E d u 2 + 2 F d u d v + G d v 2 ,
which yields
∂ r ∂ u
∂ r ∂ u
∂ r ∂ u
∂ r ∂ v
∂ r ∂ v
∂ r ∂ v
E =
F =
G =
.
Made with FlippingBook Digital Publishing Software