Mathematical Physics Vol 1
4.6 Examples
207
As A = ∑ i A i e i , using the results from the previous Example 160, we obtain ∇ × A = ∇ × ( A 1 e 1 + A 2 e 2 + A 3 e 3 )= = ∇ × ( A 1 e 1 )+ ∇ × ( A 2 e 2 )+ ∇ × ( A 3 e 3 )= = e 2 h 3 h 1 ∂ ∂ u 3 ( A 1 h 1 ) − e 3 h 1 h 2 ∂ ∂ u 2 ( A 1 h 1 )+
∂ ∂ u 1
∂ ∂ u 3
e 3 h 1 h 2
e 1 h 2 h 3
( A 2 h 2 ) −
( A 2 h 2 )+
+
∂ ∂ u 2
∂ ∂ u 1
e 1 h 2 h 3
e 2 h 3 h 1 e 2 h 3 h 1
( A 3 h 3 ) − ( A 2 h 2 ) +
( A 3 h 3 )=
+
e 1 h 2 h 3
( A 3 h 3 ) +
∂ ∂ u 2
∂ ∂ u 3
∂ ∂ u 3
∂ ∂ u 1
( A 3 h 3 ) −
( A 1 h 1 ) −
=
e 3 h 1 h 2
( A 1 h 1 ) =
∂ ∂ u 1
∂ ∂ u 2
( A 2 h 2 ) −
+
h 1 e 1 h 1 h 2 h 3
( A 2 h 2 ) +
h 2 e 2 h 3 h 1 h 2 ( A 1 h 1 ) ,
( A 3 h 3 ) +
∂ ∂ u 2
∂ ∂ u 3
∂ ∂ u 3
∂ ∂ u 1
( A 3 h 3 ) −
( A 1 h 1 ) −
=
h 3 e 3 h 1 h 2 h 3
∂ ∂ u 1
∂ ∂ u 2
( A 2 h 2 ) −
+
and thus rot A can be written in the following form
h 1 e 1 h 2 e 2 h 3 e 3 ∂ ∂ u 1 ∂ ∂ u 2 ∂ ∂ u 3 A 1 h 1 A 2 h 2 A 3 h 3
1 h 1 h 2 h 3
∇ × A =
.
Exercise 162 Calculate ∇ 2 ψ in orthogonal generalized coordinates, where ψ is a scalar function.
Solution According to Example 157 on p. 203 we have
∂ψ ∂ u 1
∂ψ ∂ u 2
∂ψ ∂ u 3
e 1 h 1
e 2 h 2
e 3 h 3
∇ ψ =
+
+
.
∂ψ ∂ u 1
∂ψ ∂ u 2
∂ψ ∂ u 3
1 h 1
1 h 2
1 h 3
Let A = ∇ ψ , then A 1 =
, A 2 =
, A 3 =
, and this example comes
down to Example 160a on p. 206.
∇ · A = ∇ · ∇ ψ = ∇ 2 ψ = 1 h 1 h 2 h 3 ∂ ∂ u 1
∂ψ ∂ u 1
∂ ∂ u 2
∂ψ ∂ u 2
h 2 h 3 h 1
h 3 h 1 h 2
+
+
∂ ∂ u 3
∂ψ ∂ u 3
h 1 h 2 h 3
+
.
Made with FlippingBook Digital Publishing Software