Mathematical Physics Vol 1
Chapter 4. Field theory
206
a) Using the expressions for e i from Example 159, p. 205 we obtain ∇ · ( A 1 e 1 )= ∇ · ( A 1 h 2 h 3 ∇ u 2 × ∇ u 3 )= = ∇ ( A 1 h 2 h 3 ) · ∇ u 2 × ∇ u 3 + A 1 h 2 h 3 ∇ · ( ∇ u 2 × ∇ u 3 )= = ∇ ( A 1 h 2 h 3 ) · e 2 h 2 × e 3 h 3 + 0 = ∇ ( A 1 h 2 h 3 ) · e 1 h 2 h 3 =
=
( A 1 h 2 h 3 ) ·
∂ ∂ u 1
∂ ∂ u 2
∂ ∂ u 3
e 1 h 1
e 2 h 2
e 3 h 3
e 1 h 2 h 3
( A 1 h 2 h 3 )+
( A 1 h 2 h 3 )+
=
∂ ∂ u 1
1 h 1 h 2 h 3
( A 1 h 2 h 3 ) .
=
Similarly, we obtain
∂ ∂ u 2 ∂ ∂ u 3
1 h 1 h 2 h 3 1 h 1 h 2 h 3
∇ · ( A 2 e 2 )= ∇ · ( A 3 e 3 )=
( A 2 h 3 h 1 ) ,
( A 3 h 1 h 2 ) .
b) Using the expressions for e i from Example 159 we obtain ∇ × ( A 1 e 1 )= ∇ × ( A 1 h 1 ∇ u 1 )= = ∇ ( A 1 h 1 ) × ∇ u 1 + A 1 h 1 ∇ × ∇ u 1 = = ∇ ( A 1 h 1 ) × e 1 h 1 + 0 =
=
( A 1 h 1 ) ×
∂ ∂ u 1
∂ ∂ u 2
∂ ∂ u 3
e 1 h 1
e 2 h 2
e 3 h 3
e 1 h 1
( A 1 h 1 )+
( A 1 h 1 )+
=
∂ ∂ u 3
∂ ∂ u 2
e 2 h 3 h 1
e 3 h 1 h 2
( A 1 h 1 ) −
( A 1 h 1 ) .
=
Similarly, we also obtain
∂ ∂ u 1 ∂ ∂ u 2
∂ ∂ u 3 ∂ ∂ u 1
e 3 h 1 h 2 e 1 h 2 h 3
e 1 h 2 h 3 e 2 h 3 h 1
∇ × ( A 2 e 2 )= ∇ × ( A 3 e 3 )=
( A 2 h 2 ) − ( A 3 h 3 ) −
( A 2 h 2 ) ,
( A 3 h 3 ) .
Exercise 161 Express rot A (= ∇ × A ) in terms of orthogonal generalized coordinates, where A = ∑ i A i e i .
Solution
Made with FlippingBook Digital Publishing Software