PSI - Issue 67

Dan Huang et al. / Procedia Structural Integrity 67 (2025) 61–79 Huang, D., Velay-Lizancos, M., Olek, J./ Structural Integrity Procedia 00 (2024) 000–000

78

18

Francioso, V., Moro, C., Martinez-Lage, I., & Velay-Lizancos, M. (2019). Curing temperature: A key factor that changes the effect of TiO2 nanoparticles on mechanical properties, calcium hydroxide formation and pore structure of cement mortars. Cement and Concrete Composites , 104 . https://doi.org/10.1016/j.cemconcomp.2019.103374 Haleema Saleem, S. J. Z. and N. A. A. (2021). Recent Advancements in the Nanomaterial Application in . Hall, C., & Hall, C. (1989). Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research , 41 (147), 51–61. https://doi.org/10.1680/macr.1989.41.147.51 Harnik, A., Meier, U., & Rösli, A. (1980). Combined Influence of Freezing and Deicing Salt on Concrete—Physical Aspects. In Durability of Building Materials and Components (pp. 474-474–11). ASTM International. https://doi.org/10.1520/STP36082S Huang, D, Velay-Lizancos, M., & Olek, J. (n.d.). The Effects of Curing Temperature on the Hydration Kinetics of Plain and Fly Ash Pastes and Compressive Strength of Corresponding Mortars with and without nano-TiO2 Addition . Huang, Dan. (2022). The Impact of Curing Temperature on the Hydration, Microstructure, Mechanical Properties, and Durability of Nanomodified Cementitious Composites . https://doi.org/10.25394/PGS.20398917.V1 Huang, Dan, Velay-Lizancos, M., & Olek, J. (n.d.). Improving Scaling Resistance of Pavement Concrete Using Titanium Dioxide (TiO 2 ) and Nanosilica . https://doi.org/10.5703/1288284317583 Huang, Dan, Velay-Lizancos, M., & Olek, J. (2023). Scaling Risk Index of Concretes Containing Nano-TiO2 and Supplementary Cementitious Materials. Transportation Research Record . https://doi.org/10.1177/03611981231178806/ASSET/IMAGES/10.1177_03611981231178806-IMG16.PNG Husem, M., & Gozutok, S. (2005). The effects of low temperature curing on the compressive strength of ordinary and high performance concrete. Construction and Building Materials , 19 (1), 49–53. https://doi.org/10.1016/j.conbuildmat.2004.04.033 Jalal, M., Fathi, M., & Farzad, M. (2013). Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete. Mechanics of Materials , 61 , 11–27. https://doi.org/10.1016/J.MECHMAT.2013.01.010 Jayapalan, A. R., Lee, B. Y., & Kurtis, K. E. (2009). Effect of Nano-sized Titanium Dioxide on Early Age Hydration of Portland Cement. In Nanotechnology in Construction 3 (pp. 267–273). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_35 Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement and Concrete Research , 35 (10), 1943–1947. https://doi.org/10.1016/J.CEMCONRES.2005.07.004 Kim, J.-K., Moon, Y.-H., & Eo, S.-H. (1998). Compressive Strength Development of Concrete With Different Curing Time and Temperature. Cement and Concrete Research , 28 (12), 1761–1773. Li, L. G., Lin, C. J., Chen, G. M., Kwan, A. K. H., & Jiang, T. (2017). Effects of packing on compressive behaviour of recycled aggregate concrete. Construction and Building Materials , 157 , 757–777. https://doi.org/10.1016/j.conbuildmat.2017.09.097 Li, Z., Ding, S., Yu, X., Han, B., & Ou, J. (2018). Multifunctional cementitious composites modified with nano titanium dioxide: A review. Composites Part A: Applied Science and Manufacturing , 111 , 115–137. https://doi.org/10.1016/J.COMPOSITESA.2018.05.019 Liu, C., Chen, F., Wu, Y., Zheng, Z., Yang, J., Yang, B., Yang, J., Hui, D., & Luo, Y. (2021). Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials. Nanotechnology Reviews , 10 (1), 1208–1235. https://doi.org/10.1515/ntrev-2021-0080 Ma, B., Li, H., Mei, J., Li, X., & Chen, F. (2015). Effects of nano-TiO2 on the toughness and durability of cement-based material. Advances in Materials Science and Engineering , 2015 , 1–10. https://doi.org/10.1155/2015/583106 Madani, H., Bagheri, A., & Parhizkar, T. (2012). The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cement and Concrete Research , 42 (12), 1563–1570. https://doi.org/10.1016/J.CEMCONRES.2012.09.004 Mehta, P. K., & Monteiro, P. J. M. (2001). CONCRETE Microstructure, Properties and Materials . Nazari, A., & Riahi, S. (2010). The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Materials Science and Engineering: A , 528 (2), 756–763. https://doi.org/10.1016/j.msea.2010.09.074 Nokken, M. R., & Hooton, R. D. (2002). Dependence of rate of absorption on degree of saturation of concrete. Cement, Concrete and Aggregates , 24 (1), 20–24. https://doi.org/10.1520/cca10487j Panesar, D. K., & Chidiac, S. E. (2007). Multi-variable statistical analysis for scaling resistance of concrete containing GGBFS. Cement and Concrete Composites , 29 (1), 39–48. https://doi.org/10.1016/j.cemconcomp.2006.08.002 Papanikolaou, I., Arena, N., & Al-Tabbaa, A. (2019). Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective. Journal of Cleaner Production , 240 (2019), 118202. https://doi.org/10.1016/j.jclepro.2019.118202 Qiao, C., Moradllo, M. K., Hall, H., Tyler Ley, M., & Weiss, W. J. (2019). Electrical resistivity and formation factor of air-entrained concrete. ACI Materials Journal , 116 (3), 85–93. https://doi.org/10.14359/51714506

Made with FlippingBook - professional solution for displaying marketing and sales documents online