PSI - Issue 67

Dan Huang et al. / Procedia Structural Integrity 67 (2025) 61–79 Huang, D., Velay-Lizancos, M., Olek, J./ Structural Integrity Procedia 00 (2024) 000–000

79

19

Ren, J., Lai, Y., & Gao, J. (2018). Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Construction and Building Materials , 175 , 277–285. https://doi.org/10.1016/j.conbuildmat.2018.04.181 Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials , 36 , 838–844. https://doi.org/10.1016/J.CONBUILDMAT.2012.06.044 Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., & Repette, W. L. (2009). Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Construction and Building Materials , 23 (7), 2487–2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005 Shekari, A. H., & Razzaghi, M. S. (2011). Influence of Nano Particles on Durability and Mechanical Properties of High Performance Concrete. Procedia Engineering , 14 , 3036–3041. https://doi.org/10.1016/j.proeng.2011.07.382 Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials – A review. Construction and Building Materials , 47 , 1069–1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052 Sun, Y., Wang, Z., Gao, Q., & Liu, C. (2018). A new mixture design methodology based on the Packing Density Theory for high performance concrete in bridge engineering. Construction and Building Materials , 182 , 80–93. https://doi.org/10.1016/j.conbuildmat.2018.06.062 Transportation, O. M. of. (2022). Material Special Provision for Retained Soil Systems (RSS) . https://tcp.mto.gov.on.ca/sites/default/files/2022 09/SSP 599S23 Sept 9%2C 2022.docx Uthaman, S., Vishwakarma, V., George, R. P., Ramachandran, D., Kumari, K., Preetha, R., Premila, M., Rajaraman, R., & Mudali, U. K. (2018). Enhancement of strength and durability of fly ash concrete in seawater environments: Synergistic effect of nanoparticles. Construction and Building Materials , 187 , 448–459. https://doi.org/10.1016/j.conbuildmat.2018.07.214 Valenza, J. J., & Scherer, G. W. (2005). Mechanisms of salt scaling. Materials and Structures/Materiaux et Constructions . https://doi.org/10.1617/14345 Valenza, John J., & Scherer, G. W. (2007a). A review of salt scaling: I. Phenomenology. In Cement and Concrete Research . https://doi.org/10.1016/j.cemconres.2007.03.005 Valenza, John J., & Scherer, G. W. (2007b). A review of salt scaling: II. Mechanisms. In Cement and Concrete Research (Vol. 37, Issue 7, pp. 1022–1034). https://doi.org/10.1016/j.cemconres.2007.03.003 Verbeck, G. J., & Klieger, P. (1957). Studies of “Salt” Scaling of Concrete. Highway Research Board Bulletin , 150 , 1–13. http://pubsindex.trb.org/view.aspx?id=101892 Weiss, W. J., Ley, T., Isgor, O. B., & Dam, T. Van. (2016). Towards performance specifications for concrete durability: using the formation factor for corrosion and critical saturation for freeze-thaw. Transportation Research Record , 1 (414), 2015–2016. https://www.researchgate.net/publication/312029942 Wu, Z., Shi, C., Gao, ; Peiwei, Wang, D., & Cao, Z. (2014). Effects of Deicing Salts on the Scaling Resistance of Concrete . https://doi.org/10.1061/(ASCE)MT.1943-5533.0001106 Zhang, M., & Li, H. (2011). Pore structure and chloride permeability of concrete containing nano-particles for pavement. Construction and Building Materials , 25 (2), 608–616. https://doi.org/10.1016/j.conbuildmat.2010.07.032 Zhutovsky, S., & Douglas Hooton, R. (2019). Role of sample conditioning in water absorption tests. Construction and Building Materials , 215 , 918–924. https://doi.org/10.1016/j.conbuildmat.2019.04.249

Made with FlippingBook - professional solution for displaying marketing and sales documents online