PSI - Issue 65
A.M. Kazakov et al. / Procedia Structural Integrity 65 (2024) 114–120 Kazakov A.M., Korznikova G.F., Korznikova E.A. / Structural Integrity Procedia 00 (2024) 000–000
119
6
its thermal conductivity by ensuring a homogeneous distribution of graphene platelets. Overall, each method has its advantages and challenges, affecting the final properties of the composite. The choice of fabrication method depends on the desired application, scale of production, and specific property requirements of the composite.
3. Conclusions
Copper-graphene composites represent a promising solution for the thermal management challenges in modern technology. The advancements in material engineering, particularly in optimizing graphene content, improving interfacial bonding, and refining fabrication methods, have significantly enhanced the thermal conductivity of these composites. As ongoing research continues to explore scalable and cost-effective production methods, copper graphene composites are poised to play a critical role in next-generation electronic devices, high-temperature motors, and other thermal management applications. Future studies focused on modeling thermal transport mechanisms will further unlock the potential of this innovative material.
Acknowledgements
The work was supported by the Russian Science Foundation (Grant No. 23-29-00863).
References Babicheva, R., Jarlöv, A., Zheng, H., Dmitriev, S., Korznikova, E., Ling Sharon Nai, M., Ramamurty, U., Zhou, K., 2022. Effect of short-range ordering and grain boundary segregation on shear deformation of CoCrFeNi high-entropy alloys with Al addition. Computational Materials Science 215, 111762. https://doi.org/10.1016/j.commatsci.2022.111762 Babicheva, R.I., Evazzade, I., Korznikova, E.A., Shepelev, I.A., Zhou, K., Dmitriev, S.V., 2019. Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Computational Materials Science 163, 248-255. https://doi.org/10.1016/j.commatsci.2019.03.022 Babicheva, R.I., Dahanayaka, M., Liu, B., Korznikova, E.A., Dmitriev, S.V., Wu, M.S., Zhou, K., 2020. Characterization of two carbon allotropes, cyclicgraphene and graphenylene, as semi-permeable materials for membranes. Materials Science and Engineering: B 259, 114569. https://doi.org/10.1016/j.mseb.2020.114569 Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y.; et al., 2010. Roll-to-roll production of 30 inch graphene films for transparent electrodes. Nature Nanotechnology 5, 574–578. https://doi.org/10.1038/nnano.2010.132 Barden, T.; Almond, D.; Pickering, S.; Morbidini, M.; Cawley, P., 2007. Detection of impact damage in CFRP composites by thermosonics. Nondestructive Testing and Evaluation - Nondestructive Testing and Evaluation 22, 71-82. 1https://doi.org/10.1080/10589750701447540 Chen, F.; Ying, J.; Wang, Y.; Du, S.; Liu, Z.; Huang, Q., 2016. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96, 836-842. https://doi.org/10.1016/j.carbon.2015.10.023 Chu, K.; Wang, X.; Wang, F.; Li, Y.; Huang, D.; Liu, H.; Ma, W.; Liu, F.; Zhang, H., 2018. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon 127, 102-112. https://doi.org/10.1016/j.carbon.2017.10.099 Cui, Y.; Wang, L.; Li, B.; Cao, G.; Fei, W., 2014. Effect of Ball Milling on the Defeat of Few-Layer Graphene and Properties of Copper Matrix Composites. Acta Metallurgica Sinica (English Letters) 27, 937-943. https://doi.org/10.1007/s40195-014-0156-x Dmitriev S.V., Morkina A.Y., Tarov D.V., Khalikova G.R., Abdullina D.U., Tatarinov P.S., Tatarinov V.P., Semenov A.S., Naimark O.B., Khokhlov A.V., Stolyarov V.V., 2024. Effect of repetitive high-density current pulses on plastic deformation of copper wires under stepwise loading. Spectrum of Mechanical Engineering and Operational Research, 1, 27-43. https://doi.org/10.31181/smeor1120243 Gwalani, B.; Li, X.; Nittala, A.; Choi, W.; Reza-E-Rabby, M.; Atehortua, J.; Bhattacharjee, A.; Pole, M.; Silverstein, J.; Song, M.; Kappagantula, K., 2024. Unprecedented electrical performance of friction-extruded copper-graphene composites. Materials & Design 237, 112555. https://doi.org/10.1016/j.matdes.2023.112555 Hidalgo-Manrique, P.; Lei, X.; Xu, R.; Zhou, M.; Kinloch, I.; Young, R., 2019. Copper/graphene composites: a review. Journal of Materials Science 54, 12236–12289 https://doi.org/10.1007/s10853-019-03703-5 Hu, B.; Yuan, H.; Chen, G., 2024. Enhancement of thermal management performance of copper foil using additive–free graphene coating. Polymers 16, 1872. https://doi.org/10.3390/polym16131872 Ilgamov, M.A., Aitbaeva, A.A., Pavlov, I.S., Dmitriev, S.V., 2024. Carbon nanotube under pulsed pressure. Facta Universitatis, Series: Mechanical Engineering, 22 (2), 275-292. https://doi.org/10.22190/FUME230820049I Jiang, R.; Zhou, X.; Liu, Z., 2017. Electroless Ni-plated graphene for tensile strength of copper. Materials Science and Engineering: A 679, 323 328. https://doi.org/10.1016/j.msea.2016.10.029 Kazakov, A.M.; Korznikova, G.F.; Tuvalev, I.I.; Izosimov, A.A.; Korznikova, E.A., 2023. The effect of copper–graphene composite architecture on thermal transport efficiency. Materials 16, 7199. https://doi.org/10.3390/ma16227199 Khobragade, N.; Kumar, B.; Bera, S.; Roy, D., 2017. Studies on graphene reinforced Cu base composites prepared by two step thermal processing method. Materials Today Proceedings 4, 8045-8051. https://doi.org/10.1016/j.matpr.2017.07.143
Made with FlippingBook Digital Publishing Software