PSI - Issue 65
A.M. Kazakov et al. / Procedia Structural Integrity 65 (2024) 114–120 Kazakov A.M., Korznikova G.F., Korznikova E.A./ Structural Integrity Procedia 00 (2024) 000–000
120
7
Korznikova, E.A., Shcherbinin, S.A., Ryabov, D.S., Chechin, G.M., Ekomasov, E.G., Barani, E., Zhou, K., Dmitriev, S.V., 2019. Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure. Physica Status Solidi (B) 256, 1800061. https://doi.org/10.1002/pssb.201800061 Korznikova, G., Czeppe, T., Khalikova, G., Gunderov, D., Korznikova, E., Litynska-Dobrzynska, L., Szlezynger, M., 2020. Microstructure and mechanical properties of Cu-graphene composites produced by two high pressure torsion procedures. Materials Characterization 161, 110122. https://doi.org/10.1016/j.matchar.2020.110122 Lee, H.; Ohsawa, I., Takahashi, J., 2015. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Applied Surface Science 328, 241-246. https://doi.org/10.1016/j.apsusc.2014.12.012 Lee, E.; Son, I.; Lee, J., 2020. Starfish surface-inspired graphene-copper metaparticles for ultrahigh vertical thermal conductivity of carbon fiber composite. Composites Science and Technology 199, 108385. https://doi.org/10.1016/j.compscitech.2020.108385 Li, J.; Zhang, P.; He, H.; Shi, B., 2020. Enhanced the thermal conductivity of flexible copper foil by introducing graphene. Materials & Design 187, 108373. https://doi.org/10.1016/j.matdes.2019.108373 Lisovenko, D.S., Baimova, J.A., Rysaeva, L.K., Gorodtsov, V.A., Rudskoy, A.I., Dmitriev, S.V., 2016. Equilibrium diamond-like carbon nanostructures with cubic anisotropy: Elastic properties. Physica Status Solidi (B) Basic Research, 253 (7), 1295-1302. https://doi.org/10.1002/pssb.201600049 Liu, D.; Zhao, J.; Ning, Y.; Ma, H.; Wang, B.; Lu, Y.; Li, W.; Li, l.; Dai, W.; Lin, C.; Jiang, N.; Xue, C.; Yu, J., 2021. Constructing zebra skin structured graphene/copper composites with ultrahigh thermal conductivity. Composites Communications 25, 100704. https://doi.org/10.1016/j.coco.2021.100704 Lu, R.; Liu, B.; Cheng, H.; Gao, S.; Li, T.; Li, J.; Fang, Q., 2022. Microstructure and properties of a graphene reinforced Cu–Cr–Mg composite. Materials 15, 6166. https://doi.org/10.3390/ma15176166 Mouleeswaran, S.; Karthi, P.; Vijayan, K.; & Ramanathan, B.; Elangovan, N.; Zitoune, R., 2011. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Composites Part B: Engineering 43, 1791-1799. https://doi.org/10.1016/j.compositesb.2012.01.007 Olguín-Orellana, G.; Soldano, J.; Jans Alzate-Morales, O.; Camarada, B.; Mariscal. M., 2023. Can graphene improve the thermal conductivity of copper nanofluids? Physical Chemistry Chemical Physics 25, 5489-5500. https://doi.org/10.1039/D3CP00064H Pavithra, C.; Sarada, B.; Rajulapati, K.; Rao, T.; Sundararajan, G., 2014. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness. Scientific Reports 4, 4049. https://doi.org/10.1038/srep04049 Rao, S.; Sethi, A.; Das, A.; Mandal, N.; Kiran, P., Ghosh, R.; Dixit, A.; Mandal, A., 2017. Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Materials and Manufacturing Processes 32, 1612-1621. https://doi.org/10.1080/10426914.2017.1279296 Rysaeva, L.K., Korznikova, E.A., Murzaev, R.T., Abdullina, D.U., Kudreyko, A.A., Baimova, J.A., Lisovenko, D.S., Dmitriev, S.V., 2020. Elastic damper based on the carbon nanotube bundle. Facta Universitatis, Series: Mechanical Engineering, 18 (1), 1-12. https://doi.org/10.22190/FUME200128011R Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2015. Simulation of folded and scrolled packings of carbon nanoribbons. Physics of the Solid State, 57 (11), 2348-2355. https://doi.org/10.1134/S1063783415110293 Song, X.; Chen, M.; Zhang, J.; Zhang, R.; Zhang, W., 2022. Study on nanoporous graphene-based hybrid architecture for surface bonding. Nanomaterials 12, 2483. https://doi.org/10.3390/nano12142483 Wejrzanowski, T.; Grybczuk, M.; Chmielewski, M.; Pietrzak, K.; Kurzydlowski, K.; Strojny-Nedza, A., 2016. Thermal conductivity of metal graphene composites. Materials Design 99, 163–173. https://doi.org/10.1016/j.matdes.2016.03.069 Wu, M.; Chen, Z.; Huang, C.; Huang, K.; Jiang, K.; Liu, J., 2019. Graphene platelet reinforced copper composites for improved tribological and thermal properties. RSC Advances 9, 39883–39892. https://doi.org/10.1039/C9RA07962A Yashiro, T.; Ogawa, T.; Sasahara, H., 2013. Temperature measurement of cutting tool and machined surface layer in milling of CFRP. International Journal of Machine Tools and Manufacture 70, 63–69. https://doi.org/10.1016/j.ijmachtools.2013.03.009 Yu, K.; Shi, Q.; Dunn, M.; Wang, T.; Qi, H., 2016. Carbon fiber reinforced thermoset composite with near 100% recyclability. Advanced Functional Materials 26, 6098-6106. https://doi.org/10.1002/adfm.201602056 Zhang, X.; Wu, K.; He, M.; Ye, Z.; Tang, S.; Jiang, Z., 2016. Facile synthesis and characterization of reduced graphene oxide/copper composites using freeze–drying and spark plasma sintering. Materials Letters 166, 67-70. https://doi.org/10.1016/j.matlet.2015.12.040
Made with FlippingBook Digital Publishing Software