PSI - Issue 53
S. Senol et al. / Procedia Structural Integrity 53 (2024) 12–28 Author name / Structural Integrity Procedia 00 (2019) 000–000
28
17
synthesis aluminum 6061 metal matrix composites produced via laser beam powder bed fusion and electron beam freeform fabrication. International Journal of Advanced Manufacturing Technology , 121 (3–4), 2197–2218. https://doi.org/10.1007/s00170-022-09443-2 Sun, R., Li, L., Zhu, Y., Guo, W., Peng, P., Cong, B., Sun, J., Che, Z., Li, B., Guo, C. & Liu, L. (2018). Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. Journal of Alloys and Compounds , 747 , 255–265. https://doi.org/10.1016/j.jallcom.2018.02.353 Tan, Q., Zhang, J., Sun, Q., Fan, Z., Li, G., Yin, Y., Liu, Y. & Zhang, M. X. (2020). Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Materialia , 196 (2020), 1–16. https://doi.org/10.1016/j.actamat.2020.06.026 Tjong, S. C. & Wang, G. S. (2004). High-cycle fatigue properties of Al-based composites reinforced with in situ TiB2 and Al2O3 particulates. Materials Science and Engineering A , 386 (1–2), 48–53. https://doi.org/10.1016/j.msea.2004.07.021 Webster, G. A. & Ezeilo, A. N. (2001). Residual stress distributions and their influence on fatigue lifetimes. International Journal of Fatigue , 23 (SUPPL. 1), 375–383. https://doi.org/10.1016/s0142-1123(01)00133-5 Wei, K., Yang, Q., Ling, B., Yang, X., Xie, H., Qu, Z. & Fang, D. (2020). Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Materials Science and Engineering: A , 772 (December 2019), 138799. https://doi.org/10.1016/j.msea.2019.138799 Yasa, E., Kruth, J. P. & Deckers, J. (2011). Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting. CIRP Annals - Manufacturing Technology , 60 (1), 263–266. https://doi.org/10.1016/j.cirp.2011.03.063 Ye, C., Zhang, C., Zhao, J. & Dong, Y. (2021). Effects of Post-processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review. Journal of Materials Engineering and Performance , 30 (9), 6407–6425. https://doi.org/10.1007/s11665-021-06021-7 Yu, W., Sing, S. L., Chua, C. K. & Tian, X. (2019). Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. Journal of Alloys and Compounds , 792 , 574–581. https://doi.org/10.1016/j.jallcom.2019.04.017 Zhao, X., Zhang, H. & Liu, Y. (2019). Effect of laser surface remelting on the fatigue crack propagation rate of 40Cr steel. Results in Physics , 12 (December 2018), 424–431. https://doi.org/10.1016/j.rinp.2018.11.097 Zhou, S. Y., Su, Y., Wang, H., Enz, J., Ebel, T. & Yan, M. (2020). Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Additive Manufacturing , 36 (July). https://doi.org/10.1016/j.addma.2020.101458 Zhu, Z., Dhokia, V. G., Nassehi, A. & Newman, S. T. (2013). A review of hybrid manufacturing processes - State of the art and future perspectives. International Journal of Computer Integrated Manufacturing , 26 (7), 596–615. https://doi.org/10.1080/0951192X.2012.749530
Made with FlippingBook Ebook Creator