PSI - Issue 53

S. Senol et al. / Procedia Structural Integrity 53 (2024) 12–28

27

16

Author name / Structural Integrity Procedia 00 (2019) 000–000

Journal of Manufacturing and Materials Processing , 2 (3). https://doi.org/10.3390/jmmp2030040 Mair, P., Kaserer, L., Braun, J., Weinberger, N., Letofsky-Papst, I. & Leichtfried, G. (2021). Microstructure and mechanical properties of a TiB2 modified Al–Cu alloy processed by laser powder-bed fusion. Materials Science and Engineering A , 799 (December 2020). https://doi.org/10.1016/j.msea.2020.140209 Maleki, E., Bagherifard, S., Bandini, M. & Guagliano, M. (2021). Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Additive Manufacturing , 37 (July 2020). https://doi.org/10.1016/j.addma.2020.101619 Manogharan, G., Wysk, R. A. & Harrysson, O. L. A. (2016). Additive manufacturing-integrated hybrid manufacturing and subtractive processes: Economic model and analysis. International Journal of Computer Integrated Manufacturing , 29 (5), 473–488. https://doi.org/10.1080/0951192X.2015.1067920 Manogharan, G., Wysk, R., Harrysson, O. & Aman, R. (2015). AIMS - A Metal Additive-hybrid Manufacturing System: System Architecture and Attributes. Procedia Manufacturing , 1 , 273–286. https://doi.org/10.1016/j.promfg.2015.09.021 Martin, J. H., Yahata, B. D., Hundley, J. M., Mayer, J. A., Schaedler, T. A. & Pollock, T. M. (2017). 3D printing of high-strength aluminium alloys. Nature , 549 (7672), 365–369. https://doi.org/10.1038/nature23894 Masoudi, S., Amini, S., Saeidi, E. & Eslami-Chalander, H. (2015). Effect of machining-induced residual stress on the distortion of thin-walled parts. International Journal of Advanced Manufacturing Technology , 76 (1–4), 597–608. https://doi.org/10.1007/s00170-014-6281-x Mavhungu, S. T., Akinlabi, E. T., Onitiri, M. A. & Varachia, F. M. (2017). Aluminum Matrix Composites for Industrial Use: Advances and Trends. Procedia Manufacturing , 7 , 178–182. https://doi.org/10.1016/j.promfg.2016.12.045 Mercelis, P. & Kruth, J. P. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal , 12 (5), 254–265. https://doi.org/10.1108/13552540610707013 Metelkova, J., Ordnung, D., Kinds, Y. & Van Hooreweder, B. (2021). Novel strategy for quality improvement of up-facing inclined surfaces of LPBF parts by combining laser-induced shock waves and in situ laser remelting. Journal of Materials Processing Technology , 290 (November 2020), 116981. https://doi.org/10.1016/j.jmatprotec.2020.116981 Metelkova, J., Ordnung, D., Kinds, Y., Witvrouw, A. & van Hooreweder, B. (2020). Improving the quality of up-facing inclined surfaces in laser powder bed fusion of metals using a dual laser setup. Procedia CIRP , 94 , 266–269. https://doi.org/10.1016/j.procir.2020.09.050 Metelkova, J., Vanmunster, L., Haitjema, H., Ordnung, D., Kruth, J.-P. & Van Hooreweder, B. (2021). Hybrid dual laser processing for improved quality of inclined up-facing surfaces in laser powder bed fusion of metals. Journal of Materials Processing Technology , 298 (March), 117263. https://doi.org/10.1016/j.jmatprotec.2021.117263 Nasab, M. H., Gastaldi, D., Lecis, N. F. & Vedani, M. (2018). On morphological surface features of the parts printed by selective laser melting (SLM). Additive Manufacturing , 24 (October), 373–377. https://doi.org/10.1016/j.addma.2018.10.011 Oliver, W. C. & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research , 7 (6), 1564–1583. https://doi.org/10.1557/JMR.1992.1564 Ordnung, D., Metelkova, J., Cutolo, A. & Van Hooreweder, B. (2022). Improving fatigue performance of metal parts with up-facing inclined surfaces produced by laser powder bed fusion and in-situ laser remelting. Additive Manufacturing Letters , 3 (February), 100049. https://doi.org/10.1016/j.addlet.2022.100049 Peyre, P., Fabbro, R., Merrien, P. & Lieurade, H. P. (1996). Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering A , 210 (1–2), 102–113. https://doi.org/10.1016/0921-5093(95)10084-9 Pramanik, A. (2014). Developments in the non-traditional machining of particle reinforced metal matrix composites. International Journal of Machine Tools and Manufacture , 86 , 44–61. https://doi.org/10.1016/j.ijmachtools.2014.07.003 Pyka, G., Kerckhofs, G., Papantoniou, I., Speirs, M., Schrooten, J. & Wevers, M. (2013). Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials , 6 (10), 4737–4757. https://doi.org/10.3390/ma6104737 Qi, P., Li, B., Wang, T., Zhou, L. & Nie, Z. (2021). Effect of heat treatment on microstructure and mechanical properties of alsi10mg alloy fabricated by selective laser melting. Materials Science Forum , 1035 MSF , 312–317. https://doi.org/10.4028/www.scientific.net/MSF.1035.312 Riensche, A., Carriere, P., Smoqi, Z., Menendez, A., Frigola, P., Kutsaev, S., Araujo, A., Matavalam, N. G. & Rao, P. (2022). Application of hybrid laser powder bed fusion additive manufacturing to microwave radio frequency quarter wave cavity resonators. International Journal of Advanced Manufacturing Technology , 619–632. https://doi.org/10.1007/s00170-022-10547-y Salvati, E. & Korsunsky, A. M. (2020). Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting. Journal of Materials Processing Technology , 275 (July 2019), 116373. https://doi.org/10.1016/j.jmatprotec.2019.116373 Sealy, M. P., Madireddy, G., Williams, R. E., Rao, P. & Toursangsaraki, M. (2018). Hybrid processes in additive manufacturing. Journal of Manufacturing Science and Engineering, Transactions of the ASME , 140 (6). https://doi.org/10.1115/1.4038644 Senol, S., Cutolo, A., Datye, A., Hooreweder, B. Van & Vanmeensel, K. (2023). Enhanced fatigue life of additively manufactured high-strength TiB2-reinforced Al-Cu-Mg-Ag composite through in-process surface modification during hybrid laser processing. Virtual and Physical Prototyping . https://doi.org/10.1080/17452759.2023.2276247 Sercombe, T. B. & Li, X. (2016). Selective laser melting of aluminium and aluminium metal matrix composites: Review. Materials Technology , 31 (2), 77–85. https://doi.org/10.1179/1753555715Y.0000000078 Sidhu, S. S., Batish, A. & Kumar, S. (2015). Analysis of residual stresses in particulate reinforced aluminium matrix composite after EDM. Materials Science and Technology (United Kingdom) , 31 (15), 1850–1859. https://doi.org/10.1179/1743284715Y.0000000033 Soady, K. A., Mellor, B. G., West, G. D., Harrison, G., Morris, A. & Reed, P. A. S. (2013). Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue. International Journal of Fatigue , 54 , 106–117. https://doi.org/10.1016/j.ijfatigue.2013.03.019 Srinivasa Rao, P., Ramji, K. & Satyanarayana, B. (2016). Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy. Alexandria Engineering Journal , 55 (2), 1077–1084. https://doi.org/10.1016/j.aej.2016.03.014 Strano, G., Hao, L., Everson, R. M. & Evans, K. E. (2013). Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology , 213 (4), 589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011 Sullivan, E., Polizzi, A., Iten, J., Nuechterlein, J., Domack, M. & Liu, S. (2022). Microstructural characterization and tensile behavior of reaction

Made with FlippingBook Ebook Creator