PSI - Issue 53
S. Senol et al. / Procedia Structural Integrity 53 (2024) 12–28 Author name / Structural Integrity Procedia 00 (2019) 000–000
26
15
https://doi.org/10.1016/j.matdes.2011.07.067 Bussu, G. & Irving, P. E. (2002). The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. International Journal of Fatigue , 25 (1), 77–88. https://doi.org/10.1016/S0142-1123(02)00038-5 Chawla, N. & Chawla, K. K. (2006). Interface. Metal Matrix Composites , 113–136. Cheng, W., Finnie, I., Gremaud, M. & Prime, M. B. (1994). Measurement of near surface residual stresses using electric discharge wire machining. Journal of Engineering Materials and Technology, Transactions of the ASME , 116 (1), 1–7. https://doi.org/10.1115/1.2904251 Chighizola, C. R., D’Elia, C. R., Weber, D., Kirsch, B., Aurich, J. C., Linke, B. S. & Hill, M. R. (2021). Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum. Experimental Mechanics , 61 (8), 1309–1322. https://doi.org/10.1007/s11340-021-00734-5 Cutolo, A., Elangeswaran, C., Muralidharan, G. K. & Van Hooreweder, B. (2022). On the role of building orientation and surface post-processes on the fatigue life of Ti-6Al-4V coupons manufactured by laser powder bed fusion. Materials Science and Engineering A , 840 (January), 142747. https://doi.org/10.1016/j.msea.2022.142747 Das, S., Klotz, M. & Klocke, F. (2003). EDM simulation: Finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology , 142 (2), 434–451. https://doi.org/10.1016/S0924-0136(03)00624-1 Datye, A., Ketkaew, J., Schroers, J. & Schwarz, U. D. (2020). Effect of the fictive temperature on the modulus, hardness, yield strength, dynamic mechanical and creep response of Zr44Ti11Cu10Ni10Be25 metallic glasses. Journal of Alloys and Compounds , 819 , 152979. https://doi.org/10.1016/j.jallcom.2019.152979 Dilberoglu, U. M., Gharehpapagh, B., Yaman, U. & Dolen, M. (2021). Current trends and research opportunities in hybrid additive manufacturing. International Journal of Advanced Manufacturing Technology , 113 (3–4), 623–648. https://doi.org/10.1007/s00170-021 06688-1 Ding, K. & Ye, L. (2006). 3 - Simulation methodology. In K. Ding & L. Ye (Eds.), Laser Shock Peening (pp. 47–72). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845691097.47 Dinh, T. D., Vanwalleghem, J., Xiang, H., Erdelyi, H., Craeghs, T. & Paepegem, W. Van. (2020). A unified approach to model the effect of porosity and high surface roughness on the fatigue properties of additively manufactured Ti6-Al4-V alloys. Additive Manufacturing , 33 (January), 101139. https://doi.org/10.1016/j.addma.2020.101139 Dong, W., Lai, J., Yu, J., Schwarz, U. D., Zhang, Y., Zhu, K. & Datye, A. (2022). Correlating nano-tribological behavior with the free volume of Zr-based bulk metallic glasses via their fictive temperature. Wear , 494 – 495 (January), 204247. https://doi.org/10.1016/j.wear.2022.204247 du Plessis, A. & Beretta, S. (2020). Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Additive Manufacturing , 35 (March), 101424. https://doi.org/10.1016/j.addma.2020.101424 Fabbro, R., Peyre, P., Berthe, L. & Scherpereel, X. (1998). Physics and applications of laser-shock processing. Journal of Laser Applications , 10 (6), 265–279. https://doi.org/10.2351/1.521861 Fitzpatrick, M. E., Fry, A. T., Holdway, P., Kandil, F. A., Shackleton, J. & Souminen, L. (2002). NPL Good Practice Guide no . 52 : determination of residual stresses by x-ray diffraction Determination of Residual Stresses by X-ray Diffraction - Issue 2 . 52 , 9–11. García Navas, V., Ferreres, I., Marañón, J. A., Garcia-Rosales, C. & Gil Sevillano, J. (2008). Electro-discharge machining (EDM) versus hard turning and grinding-Comparison of residual stresses and surface integrity generated in AISI O1 tool steel. Journal of Materials Processing Technology , 195 (1–3), 186–194. https://doi.org/10.1016/j.jmatprotec.2007.04.131 Ge, M. Z. & Xiang, J. Y. (2016). Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy. Journal of Alloys and Compounds , 680 (2016), 544–552. https://doi.org/10.1016/j.jallcom.2016.04.179 Gockel, J., Sheridan, L., Koerper, B. & Whip, B. (2019). The influence of additive manufacturing processing parameters on surface roughness and fatigue life. International Journal of Fatigue , 124 (October 2018), 380–388. https://doi.org/10.1016/j.ijfatigue.2019.03.025 Hay, J. L. & Corporation, M. T. S. S. (2018). Instrumented Indentation Testing. Mechanical Testing and Evaluation , 8 , 232–243. https://doi.org/10.31399/asm.hb.v08.a0003273 He, Y., Zhong, M., Beuth, J. & Webler, B. (2020). A study of microstructure and cracking behavior of H13 tool steel produced by laser powder bed fusion using single-tracks, multi-track pads, and 3D cubes. Journal of Materials Processing Technology , 286 (January), 116802. https://doi.org/10.1016/j.jmatprotec.2020.116802 Ho, K. H. & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture , 43 (13), 1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7 Lai, J., Hu, W., Datye, A., Liu, J., Schroers, J., Schwarz, U. D. & Yu, J. (2021). Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach. Journal of Materials Science and Technology , 84 , 97–104. https://doi.org/10.1016/j.jmst.2020.12.038 Li, G., Brodu, E., Soete, J., Wei, H., Liu, T., Yang, T., Liao, W. & Vanmeensel, K. (2021). Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys. Additive Manufacturing , 47 (August), 102210. https://doi.org/10.1016/j.addma.2021.102210 Li, Y. H., Wang, B., Ma, C. P., Fang, Z. H., Chen, L. F., Guan, Y. C. & Yang, S. F. (2019). Material characterization, thermal analysis, and mechanical performance of a laser-polished Ti Alloy prepared by selective laser melting. Metals , 9 (2), 1–11. https://doi.org/10.3390/met9020112 Liao, Z., Abdelhafeez, A., Li, H., Yang, Y., Diaz, O. G. & Axinte, D. (2019). State-of-the-art of surface integrity in machining of metal matrix composites. International Journal of Machine Tools and Manufacture , 143 (February), 63–91. https://doi.org/10.1016/j.ijmachtools.2019.05.006 Liu, C., Yan, D., Tan, J., Mai, Z., Cai, Z., Dai, Y., Jiang, M., Wang, P., Liu, Z., Li, C. C., Lao, C. & Chen, Z. (2020). Development and experimental validation of a hybrid selective laser melting and CNC milling system. Additive Manufacturing , 36 (August), 101550. https://doi.org/10.1016/j.addma.2020.101550 Liu, X., Liu, Y., Zhou, Z., Wang, K., Zhan, Q. & Xiao, X. (2021). Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC–TiH2. Materials Science and Engineering A , 813 (December 2020), 141171. https://doi.org/10.1016/j.msea.2021.141171 Maamoun, A. H., Elbestawi, M. A. & Veldhuis, S. C. (2018). Influence of shot peening on alsi10mg parts fabricated by additive manufacturing.
Made with FlippingBook Ebook Creator