Issue 48
A. Fesenko et alii, Frattura ed Integrità Strutturale, 48 (2019) 768-792; DOI: 10.3221/IGF-ESIS.48.70
1 w ( ) z
1 F N z F N z
( , ) ( , )
β i b
GD
a e
cos
βα 1
,
(38)
βα Z z
( )
2
2
N
2 w ( ) z
( ) T h F N z
( , ) ( , )
βα
1
βα 2
,
(39)
F N z
βα Z z
( )
D
2
2
N
( , ), ( , ) F N z F N z ,
N D are defined in (37).
functions
1
2
h
0
N z
1 ( ) ( T
3 w ( ) z βα
2 z N T d ) ( )
e
N z
0
βα
*
βα
N
4
h
ND 0
0
(11) 2 (12) ( ) ( ) , T N T d
βα
βα
2
N
(40)
h
0
N z
) ( )
3 Z z βα
1
( ) T d
e
( N z T
N z
( )
0
βα
*
βα
4
h
ND 0
0
(21) 2 (22) ( ) ( ) . T N T d
βα
βα
2
N
In detail, the inversion of the Fourier transform for terms of the form (39) is described using the example of the term 2 βα w ( ) z . Proceeding from the boundary condition in (10) of the stationary heat conduction problem considered in part 3
d d . Then the representation of the term 2 βα
w ( ) z will take the
( , ) cos i e
βα f
βα T h f ( )
of the article, one gets
0
form
F N z
( , )
( , ) cos i e
i y
2 w ( , , ) x y z
xd d d d
f
e
cos
1
2
D
2
N
0
0
Changing the order of integration, using the formula (401.06.,[41]), and application of the Euler formula allows to simplify the term 2 βα w ( ) z . The temperature is assumed to be constant, distributed over a finite interval , 0 B B A , which leads to the expression 2 ( ) ( ) ( ) 1 2 0 ( , ) w ( , , ) 8 B A i y i x i x N B F N z C x y z e e e d d d d D (41) Further, using formula (A3) in the Appendix 1, correspondence (41) can be written as
B A
t F t z
C
( , )
2 2 t
2 w ( , , ) x y z
* J t x y
t D sh t
d d dt
( , , , , )
,
1
0
D
4
t
B
0 0
Applying the procedure for calculating multiple integrals of the Bessel function to internal integral, one gets
C
t F t z
( , )
2
2 0 0
( )cos( cos )cos( sin ) A B t S tx ty , d dt
2 w ( , , ) x y z
1
2
D
t
779
Made with FlippingBook Online newsletter